99 research outputs found

    11-keto-alpha-boswellic acid, a novel triterpenoid from Boswellia spp. with chemotaxonomic potential and antitumor activity against triple-negative breast cancer cells

    Get PDF
    Boswellic acids, and particularly 11-keto-boswellic acids, triterpenoids derived from the genus Boswellia (Burseraceae), are known for their anti-inflammatory and potential antitumor efficacy. Although boswellic acids generally occur as α-isomers (oleanane type) and β-isomers (ursane type), 11-keto-boswellic acid (KBA) was found only as the β-isomer, β-KBA. Here, the existence and natural occurrence of the respective α-isomer, 11-keto-α-boswellic acid (α-KBA), is demonstrated for the first time. Initially, α-KBA was synthesized and characterized by high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy, and a highly selective, sensitive, and accurate high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed by Design of Experiments (DoE) using a pentafluorophenyl stationary phase. This method allowed the selective quantification of individual 11-keto-boswellic acids and provided evidence for α-KBA in Boswellia spp. oleogum resins. The contents of α-KBA as well as further boswellic acids and the composition of essential oils were used to chemotaxonomically classify 41 Boswellia oleogum resins from 9 different species. Moreover, α-KBA exhibited cytotoxicity against three treatment-resistant triple-negative breast cancer (TNBC) cell lines in vitro and also induced apoptosis in MDA-MB-231 xenografts in vivo. The respective β-isomer and the acetylated form demonstrate higher cytotoxic efficacies against TNBC cells. This provides further insights into the structure-activity relationship of boswellic acids and could support future developments of potential anti-inflammatory and antitumor drugs

    Morphological and phylogenetic features of the Crimean population of <i>Juniperus deltoids</i> R.P. Adams

    Get PDF
    Juniperus deltoides is a relict species from the Tertiary Period. It is a typical representative of the Mediterranean group of the section Juniperus. It is included in the Red Books of the Republic of Crimea and the city of Sevastopol. Until recently, it was believed that a population of J. oxycedrus grew in Crimea. Currently, J. deltoides is described as a cryptic species, morphologically difficult to distinguish from J. oxycedrus. As a result, it became necessary to conduct a series of detailed studies to determine the morphological and phylogenetic features of the Crimean cryptic population in order to identify it as being one of the species of the cryptic pair. The studies were carried out in two stages: at the first stage, the morphological features of the vegetative and generative organs and their difference from J. oxycedrus were determined; the second stage included genetic research. The length of the needles of the Crimean population is 12.94 ± 0.19 mm, which corresponds to the Eastern Italian population of J. deltoides. At the same time, the width of the needles is 1.39 ± 0.02 mm, which is typical of the Portuguese population of J. oxycedrus. The dimensions of the cones are d1 (conditional height) = 7.54 ± 0.14 mm, and d2 (conditional width) = 9.11 ± 0.09 mm, which is more in line with J. deltoides. The shapes of the cones are very diverse. Some individuals have cones, the covering scales of which are visually indistinguishable, and their tops are completely fused. A similar phenomenon is characteristic of the Western Mediterranean populations of J. oxycedrus. Morphological analysis of the vegetative and generative organs of J. deltoides showed that when these two traits are combined, it is not possible to reliably distinguish between J. deltoides and J. oxycedrus individuals. Nuclear (ITS internal transcribed spacer) and chloroplast (petN-psbM, trnS-trnG) non-coding regions of the genome were used for genetic analysis. Studies have shown that the nuclear regions of genes have greater variability than chloroplast regions. The sequences obtained in this work formed a clade with J. deltoides samples 9430 and 9431 (BAYLU) growing in Turkey, which makes it possible to assign the samples studied to J. deltoides

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Beneficial and Detrimental Effects of Plasmin(ogen) during Infection and Sepsis in Mice

    Get PDF
    Plasmin has been proposed to be an important mediator during inflammation/infection. In this study, by using mice lacking genes for plasminogen, tissue-type plasminogen activator (tPA), and urokinase-type PA (uPA), we have investigated the functional roles of active plasmin in infection and sepsis. Two models were used: an infection model by intravenous injection of 1×107 CFU of S. aureus, and a sepsis model by intravenous injection of 1.6×108 CFU of S. aureus. We found that in the infection model, wild-type (WT) mice showed significantly higher survival rates than plasminogen-deficient (plg-/-) mice. However, in the sepsis model, plg-/- or tPA-/-/uPA-/- mice showed the highest survival rate whereas WT and tPA+/-/uPA+/- mice showed the lowest survival rate, and plg+/-, tPA-/-, and uPA-/- mice had an intermediate survival rate. These results indicate that the levels of active plasmin are critical in determining the survival rate in the sepsis, partly through high levels of inflammatory cytokines and enhanced STAT3 activation. We conclude that plasmin is beneficial in infection but promotes the production of inflammatory cytokines in sepsis that may cause tissue destruction, diminished neutrophil function, and an impaired capacity to kill bacteria which eventually causes death of these mice

    Plasmin Inhibitors Prevent Leukocyte Accumulation and Remodeling Events in the Postischemic Microvasculature

    Get PDF
    Clinical trials revealed beneficial effects of the broad-spectrum serine protease inhibitor aprotinin on the prevention of ischemia-reperfusion (I/R) injury. The underlying mechanisms remained largely unclear. Using in vivo microscopy on the cremaster muscle of male C57BL/6 mice, aprotinin as well as inhibitors of the serine protease plasmin including tranexamic acid and ε-aminocaproic acid were found to significantly diminish I/R-elicited intravascular firm adherence and (subsequent) transmigration of neutrophils. Remodeling of collagen IV within the postischemic perivenular basement membrane was almost completely abrogated in animals treated with plasmin inhibitors or aprotinin. In separate experiments, incubation with plasmin did not directly activate neutrophils. Extravascular, but not intravascular administration of plasmin caused a dose-dependent increase in numbers of firmly adherent and transmigrated neutrophils. Blockade of mast cell activation as well as inhibition of leukotriene synthesis or antagonism of the platelet-activating-factor receptor significantly reduced plasmin-dependent neutrophil responses. In conclusion, our data suggest that extravasated plasmin(ogen) mediates neutrophil recruitment in vivo via activation of perivascular mast cells and secondary generation of lipid mediators. Aprotinin as well as the plasmin inhibitors tranexamic acid and ε-aminocaproic acid interfere with this inflammatory cascade and effectively prevent postischemic neutrophil responses as well as remodeling events within the vessel wall

    Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection

    An NF-κB and Slug Regulatory Loop Active in Early Vertebrate Mesoderm

    Get PDF
    BACKGROUND: In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation; its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. METHODOLOGY & PRINCIPLE FINDINGS: Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-apoptotic protein Bcl-xL; Bcl-xL's effects are dependent upon IκB kinase-mediated activation of the bipartite transcription factor NF-κB. NF-κB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs encoding the NF-κB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9 RNA. CONCLUSIONS/SIGNIFICANCE: These studies reveal a Slug/Snail–NF-κB regulatory circuit, analogous to that present in the early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both in development and in the course of inflammatory and metastatic disease

    Retigeric Acid B Exhibits Antitumor Activity through Suppression of Nuclear Factor-κB Signaling in Prostate Cancer Cells in Vitro and in Vivo

    Get PDF
    Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-xL, cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well

    Amyloids - A functional coat for microorganisms

    Get PDF
    Amyloids are filamentous protein structures ~10 nm wide and 0.1–10 µm long that share a structural motif, the cross-β structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in mediating mechanical invasion of abiotic and biotic substrates. In animal hosts, evidence indicates that these protein structures also contribute to colonization by activating host proteases that are involved in haemostasis, inflammation and remodelling of the extracellular matrix. Activation of proteases by amyloids is also implicated in modulating blood coagulation, resulting in potentially life-threatening complications.
    • …
    corecore