157 research outputs found

    Ultrashort-pulse laser with an intracavity phase shaping element

    Get PDF
    A novel ultrashort-pulse laser cavity configuration that incorporates an intracavity deformable mirror as a phase control element is reported. A user-defined spectral phase relation of 0.7 radians relative shift could be produced at around 1035 nm. Phase shaping as well as pulse duration optimization was achieved via a computer-controlled feedback loop

    Towards an all-integrated MOPA configuration using Yb-doped ion-exchanged waveguides

    No full text
    In this paper, we present an ion-exchanged Yb-glass waveguide amplifier, seeded by an ion-exchanged Yb-glass waveguide laser demonstrating a gain as high as 10 dB. We also present multi-GHz, mode-locked ion-exchanged waveguide lasers and discuss the development of a fully integrated high-power, multi-GHz waveguide sourc

    Titanium sapphire : A decade of diode-laser pumping

    Get PDF
    For many years, Ti:sapphire was the prototypical example of a solid-state laser material that could not be diode pumped. The rationale for this assessment follows from the laser properties of Ti:sapphire, which combine to demand high brightness pumping in the blue-green region (see fig. 1 [1]). The development of efficient Gallium Nitride (GaN) based laser diodes eroded this logic [2], and improvements in the spatial brightness of GaN diode lasers subsequently enabled the first demonstration of a directly diode-laser pumped Ti:sapphire laser in 2009 [3], This presentation will outline the physics that makes diode-pumping difficult, and the developments that mean, it is, nonetheless, possible. Interestingly, diode-pumping of CW and modelocked Ti:sapphire lasers was achieved not by a radical redesign of the laser, but by careful optimisation of existing approaches that enabled the rapidly improving brightness of GaN diode lasers to be exploited [3-5]

    Passive mode locking of a Tm,Ho:KY(WO4)(2) laser around 2 μm

    Get PDF
    We report the first demonstration, to our knowledge, of passive mode locking in a Tm3+, Ho3+-codoped KYWO42 laser operating in the 2000-2060 nm spectral region. An InGaAsSb-based quantum well semiconductor saturable absorber mirror is used for the initiation and stabilization of the ultrashort pulse generation. Pulses as short as 3.3 ps were generated at 2057 nm with average output powers up to 315 mW at a pulse repetition frequency of 132 MHz for 1.15 W of absorbed pump power at 802 nm from a Ti:sapphire laser

    Ultrafast diode-pumped Ti:sapphire laser with broad tunability

    Get PDF
    We report a broadly wavelength-tunable femtosecond diode-pumped Ti:sapphire laser, passively mode-locked using both semiconductor saturable absorber mirror (SESAM) and Kerr-lens mode-locking (KLM) techniques. Using two pump laser diodes (operating at 450 nm), an average output power as high as 433 mW is generated during mode-locking with the SESAM. A tunability range of 37 nm (788-825 nm) was achieved with the shortest pulse duration of 62 fs at 812 nm. In the KLM regime, an average output power as high as 382 mW, pulses as short as 54 fs, and a tunability of 120 nm (755-875 nm) are demonstrated

    A broadly tunable ultrafast diode-pumped Ti:sapphire laser

    Get PDF
    We report a diode-pumped ultrafast Ti:sapphire laser tunable over a 50 nm range. Sub-100 fs pulses are generated at a pulse repetition rate of 139 MHz with a maximum average output power of 430 mW

    Near-infrared, mode-locked waveguide lasers with multi-GHz repetition rates

    Get PDF
    In this work, we discuss mode-locking results obtained with low-loss, ion-exchanged waveguide lasers. With Yb3+-doped phosphate glass waveguide lasers, a repetition rate of up to 15.2 GHz was achieved at a wavelength of 1047 nm with an average power of 27 mW and pulse duration of 811 fs. The gap between the waveguide and the SESAM introduced negative group velocity dispersion via the Gires Tournois Interferometer (GTI) effect which allowed the soliton mode-locking of the device. A novel quantum dot SESAM was used to mode-lock Er3+, Yb3+-doped phosphate glass waveguide lasers around 1500 nm. Picosecond pulses were achieved at a maximum repetition rate of 6.8 GHz and an average output power of 30 mW. The repetition rate was tuned by more than 1 MHz by varying the pump power

    Diode-pumped femtosecond Tm3+-doped LuScO3 laser near 2.1  μm

    Get PDF
    We report on the first demonstration, to the best of our knowledge, of a diode-pumped Tm:LuScO3 laser. Efficient and broadly tunable continuous wave operation in the 1973–2141 nm region and femtosecond mode-locking through the use of an ion-implanted InGaAsSb quantum-well-based semiconductor saturable absorber mirror are realized. When mode-locked, near-transform-limited pulses as short as 170 fs were generated at 2093 nm with an average output power of 113 mW and a pulse repetition frequency of 115.2 MHz. Tunable picosecond pulse generation was demonstrated in the 2074–2104 nm spectral range

    Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers

    Get PDF
    We demonstrate laser action in diode-pumped microchip monolithic cavity channel waveguides of Yb:KGd(WO4)2 and Yb:KY(WO4)2 that were fabricated by ultrafast laser writing. The maximum output power achieved was 18.6 mW with a threshold of approximately 100 mW from an Yb:KGd(WO4)2waveguide laser operating at 1023 nm. The propagation losses for this waveguide structure were measured to be 1.9 dBcm−1

    Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking

    Get PDF
    A high-power sub-60 fs mode-locked diode-pumped Yb:KGW laser based on hybrid action of an InGaAs quantum-dot saturable absorber mirror and Kerr-lens mode locking was demonstrated. The laser delivered 56 fs pulses with 1.95 W of average power corresponding to 450 kW of peak power. The width of the generated laser spectrum was 20.5 nm, which was near the gain bandwidth limit of the Yb:KGW crystal. To the best of our knowledge, these are the shortest pulses generated from the monoclinic double tungstate crystals (and Yb:KGW laser crystal in particular) and the most powerful in the sub-60 fs regime. At the same time, they are also the shortest pulses produced to date with the help of a quantum-dot-based saturable absorber. High-power operation with a pulse duration of 90 fs and 2.85 W of average output power was also demonstrated
    corecore