2,406 research outputs found
KASCADE: Astrophysical results and tests of hadronic interaction models
KASCADE is a multi-detector setup to get redundant information on single air
shower basis. The information is used to perform multiparameter analyses to
solve the threefold problem of the reconstruction of (i)the unknown primary
energy, (ii) the primary mass, and (iii) to quantify the characteristics of the
hadronic interactions in the air-shower development. In this talk recent
results of the KASCADE data analyses are summarized concerning cosmic ray
anisotropy studies, determination of flux spectra for different primary mass
groups, and approaches to test hadronic interaction models. Neither large scale
anisotropies nor point sources were found in the KASCADE data set. The energy
spectra of the light element groups result in a knee-like bending and a
steepening above the knee. The topology of the individual knee positions shows
a dependency on the primary particle. Though no hadronic interaction model is
fully able to describe the multi-parameter data of KASCADE consistently, the
more recent models or improved versions of older models reproduce the data
better than few years ago.Comment: to appear in Nucl. Phys. B (Proc. Suppl.), Proc. of the XIII
ISVHECRI, Pylos 2004 - with a better quality of the figure
Dissecting the knee - Air shower measurements with KASCADE
Recent results of the KASCADE air shower experiment are presented in order to
shed some light on the astrophysics of cosmic rays in the region of the knee in
the energy spectrum. The results include investigations of high-energy
interactions in the atmosphere, the analysis of the arrival directions of
cosmic rays, the determination of the mean logarithmic mass, and the unfolding
of energy spectra for elemental groups
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
The wavefront of the radio signal emitted by cosmic ray air showers
Analyzing measurements of the LOPES antenna array together with corresponding
CoREAS simulations for more than 300 measured events with energy above
eV and zenith angles smaller than , we find that the radio
wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The
simulations predict a slightly steeper wavefront towards East than towards
West, but this asymmetry is negligible against the measurement uncertainties of
LOPES. At axis distances m, the wavefront can be approximated by
a simple cone. According to the simulations, the cone angle is clearly
correlated with the shower maximum. Thus, we confirm earlier predictions that
arrival time measurements can be used to study the longitudinal shower
development, but now using a realistic wavefront. Moreover, we show that the
hyperbolic wavefront is compatible with our measurement, and we present several
experimental indications that the cone angle is indeed sensitive to the shower
development. Consequently, the wavefront can be used to statistically study the
primary composition of ultra-high energy cosmic rays. At LOPES, the
experimentally achieved precision for the shower maximum is limited by
measurement uncertainties to approximately g/cm. But the simulations
indicate that under better conditions this method might yield an accuracy for
the atmospheric depth of the shower maximum, , better than
g/cm. This would be competitive with the established air-fluorescence
and air-Cherenkov techniques, where the radio technique offers the advantage of
a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be
used to reconstruct the shower geometry more accurately, which potentially
allows a better reconstruction of all other shower parameters, too.Comment: accepted by JCA
On noise treatment in radio measurements of cosmic ray air showers
Precise measurements of the radio emission by cosmic ray air showers require
an adequate treatment of noise. Unlike to usual experiments in particle
physics, where noise always adds to the signal, radio noise can in principle
decrease or increase the signal if it interferes by chance destructively or
constructively. Consequently, noise cannot simply be subtracted from the
signal, and its influence on amplitude and time measurement of radio pulses
must be studied with care. First, noise has to be determined consistently with
the definition of the radio signal which typically is the maximum field
strength of the radio pulse. Second, the average impact of noise on radio pulse
measurements at individual antennas is studied for LOPES. It is shown that a
correct treatment of noise is especially important at low signal-to-noise
ratios: noise can be the dominant source of uncertainty for pulse height and
time measurements, and it can systematically flatten the slope of lateral
distributions. The presented method can also be transfered to other experiments
in radio and acoustic detection of cosmic rays and neutrinos.Comment: 4 pages, 6 figures, submitted to NIM A, Proceedings of ARENA 2010,
Nantes, Franc
Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30
When Ultra High Energy Cosmic Rays interact with particles in the Earth's
atmosphere, they produce a shower of secondary particles propagating toward the
ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas
investigating the radio emission from these showers in detail and clarifying if
the technique is useful for largescale applications. LOPES-30 is co-located and
measures in coincidence with the air shower experiment KASCADE-Grande. Status
of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U
2008-2009 President\u27s Report
The Linfield College President\u27s Annual Report is a collection of information about the year in review, including academics, student life and athletics, enrollment, finances, philanthropy, and leadership
- …
