841 research outputs found

    CCSD(T) Study of CD3-O-CD3 and CH3-O-CD3 Far-Infrared Spectra

    Get PDF
    From a vibrationally corrected 3D potential energy surface determined with highly correlated ab initio calculations (CCSD(T)), the lowest vibrational energies of two dimethyl-ether isotopologues, 12CH3–16O–12CD3 (DME-d3) and 12CD3–16O–12CD3 (DME-d6), are computed variationally. The levels that can be populated at very low temperatures correspond to the COC-bending and the two methyl torsional modes. Molecular symmetry groups are used for the classification of levels and torsional splittings. DME-d6 belongs to the G36 group, as the most abundant isotopologue 12CH3–16O–12CH3 (DME-h6), while DME-d3 is a G18 species. Previous assignments of experimental Raman and far-infrared spectra are discussed from an effective Hamiltonian obtained after refining the ab initio parameters. Because a good agreement between calculated and experimental transition frequencies is reached, new assignments are proposed for various combination bands corresponding to the two deuterated isotopologues and for the 020 → 030 transition of DME-d6. Vibrationally corrected potential energy barriers, structural parameters, and anharmonic spectroscopic parameters are provided. For the 3N – 9 neglected vibrational modes, harmonic and anharmonic fundamental frequencies are obtained using second-order perturbation theory by means of CCSD and MP2 force fields. Fermi resonances between the COC-bending and the torsional modes modify DME-d3 intensities and the band positions of the torsional overtones

    Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wax ester synthases (WSs) can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel.</p> <p>Results</p> <p>Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in <it>Saccharomyces cerevisiae</it>. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters) production in <it>S. cerevisiae</it>. All investigated WSs, from <it>Acinetobacter baylyi </it>ADP1, <it>Marinobacter hydrocarbonoclasticus </it>DSM 8798, <it>Rhodococcus opacus </it>PD630, <it>Mus musculus </it>C57BL/6 and <it>Psychrobacter arcticus </it>273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from <it>M. hydrocarbonoclasticus </it>DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production.</p> <p>Conclusions</p> <p>Five WSs from different species were functionally expressed and their substrate preference characterized in <it>S. cerevisiae</it>, thus constructing cell factories for the production of specific kinds of wax ester. WS from <it>M. hydrocarbonoclasticus </it>showed the highest preference for ethanol compared to the other WSs, and could permit the engineered <it>S. cerevisiae </it>to produce biodiesel.</p

    Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides

    Get PDF
    The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system

    Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at √s=13 TeV

    Get PDF
    Measurements of the differential jet cross section are presented as a function of the jet mass in dijet events, in bins of jet transverse momentum, with and without a jet grooming algorithm. The data have been recorded by the CMS Collaboration in proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 2.3 fb−1. The absolute cross sections show slightly different jet transverse momentum spectra in data and Monte Carlo event generators for the settings used. Removing this transverse momentum dependence, the normalized cross section for ungroomed jets is consistent with the prediction from Monte Carlo event generators for masses below 30% of the transverse momentum. The normalized cross section for groomed jets is measured with higher precision than the ungroomed cross section. Semi-analytical calculations of the jet mass beyond leading logarithmic accuracy are compared to data, as well as predictions at leading order and next-to-leading order, which include parton showering and hadronization. Overall, in the normalized cross section, the theoretical predictions agree with the measured cross sections within the uncertainties for masses from 10 to 30% of the jet transverse momentum

    A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis

    Get PDF
    The role of CD8 T cells in anti-tuberculosis immunity in humans remains unknown, and studies of CD8 T cell–mediated protection against tuberculosis in mice have yielded controversial results. Unlike mice, humans and nonhuman primates share a number of important features of the immune system that relate directly to the specificity and functions of CD8 T cells, such as the expression of group 1 CD1 proteins that are capable of presenting Mycobacterium tuberculosis lipids antigens and the cytotoxic/bactericidal protein granulysin. Employing a more relevant nonhuman primate model of human tuberculosis, we examined the contribution of BCG- or M. tuberculosis-elicited CD8 T cells to vaccine-induced immunity against tuberculosis. CD8 depletion compromised BCG vaccine-induced immune control of M. tuberculosis replication in the vaccinated rhesus macaques. Depletion of CD8 T cells in BCG-vaccinated rhesus macaques led to a significant decrease in the vaccine-induced immunity against tuberculosis. Consistently, depletion of CD8 T cells in rhesus macaques that had been previously infected with M. tuberculosis and cured by antibiotic therapy also resulted in a loss of anti-tuberculosis immunity upon M. tuberculosis re-infection. The current study demonstrates a major role for CD8 T cells in anti-tuberculosis immunity, and supports the view that CD8 T cells should be included in strategies for development of new tuberculosis vaccines and immunotherapeutics

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector

    Get PDF

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    corecore