1,655 research outputs found
Multiple Particle Interference and Quantum Error Correction
The concept of multiple particle interference is discussed, using insights
provided by the classical theory of error correcting codes. This leads to a
discussion of error correction in a quantum communication channel or a quantum
computer. Methods of error correction in the quantum regime are presented, and
their limitations assessed. A quantum channel can recover from arbitrary
decoherence of x qubits if K bits of quantum information are encoded using n
quantum bits, where K/n can be greater than 1-2 H(2x/n), but must be less than
1 - 2 H(x/n). This implies exponential reduction of decoherence with only a
polynomial increase in the computing resources required. Therefore quantum
computation can be made free of errors in the presence of physically realistic
levels of decoherence. The methods also allow isolation of quantum
communication from noise and evesdropping (quantum privacy amplification).Comment: Submitted to Proc. Roy. Soc. Lond. A. in November 1995, accepted May
1996. 39 pages, 6 figures. This is now the final version. The changes are
some added references, changed final figure, and a more precise use of the
word `decoherence'. I would like to propose the word `defection' for a
general unknown error of a single qubit (rotation and/or entanglement). It is
useful because it captures the nature of the error process, and has a verb
form `to defect'. Random unitary changes (rotations) of a qubit are caused by
defects in the quantum computer; to entangle randomly with the environment is
to form a treacherous alliance with an enemy of successful quantu
An evolutionary model with Turing machines
The development of a large non-coding fraction in eukaryotic DNA and the
phenomenon of the code-bloat in the field of evolutionary computations show a
striking similarity. This seems to suggest that (in the presence of mechanisms
of code growth) the evolution of a complex code can't be attained without
maintaining a large inactive fraction. To test this hypothesis we performed
computer simulations of an evolutionary toy model for Turing machines, studying
the relations among fitness and coding/non-coding ratio while varying mutation
and code growth rates. The results suggest that, in our model, having a large
reservoir of non-coding states constitutes a great (long term) evolutionary
advantage.Comment: 16 pages, 7 figure
Turing's three philosophical lessons and the philosophy of information
In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work. This journal is © 2012 The Royal Society.Peer reviewe
Diffusion-induced spontaneous pattern formation on gelation surfaces
Although the pattern formation on polymer gels has been considered as a
result of the mechanical instability due to the volume phase transition, we
found a macroscopic surface pattern formation not caused by the mechanical
instability. It develops on gelation surfaces, and we consider the
reaction-diffusion dynamics mainly induces a surface instability during
polymerization. Random and straight stripe patterns were observed, depending on
gelation conditions. We found the scaling relation between the characteristic
wavelength and the gelation time. This scaling is consistent with the
reaction-diffusion dynamics and would be a first step to reveal the gelation
pattern formation dynamics.Comment: 7 pages, 4 figure
Two-Bit Messages are Sufficient to Implement Atomic Read/Write Registers in Crash-prone Systems
Atomic registers are certainly the most basic objects of computing science.
Their implementation on top of an n-process asynchronous message-passing system
has received a lot of attention. It has been shown that t \textless{} n/2
(where t is the maximal number of processes that may crash) is a necessary and
sufficient requirement to build an atomic register on top of a crash-prone
asynchronous message-passing system. Considering such a context, this paper
presents an algorithm which implements a single-writer multi-reader atomic
register with four message types only, and where no message needs to carry
control information in addition to its type. Hence, two bits are sufficient to
capture all the control information carried by all the implementation messages.
Moreover, the messages of two types need to carry a data value while the
messages of the two other types carry no value at all. As far as we know, this
algorithm is the first with such an optimality property on the size of control
information carried by messages. It is also particularly efficient from a time
complexity point of view
Diversity, Stability, Recursivity, and Rule Generation in Biological System: Intra-inter Dynamics Approach
Basic problems for the construction of a scenario for the Life are discussed.
To study the problems in terms of dynamical systems theory, a scheme of
intra-inter dynamics is presented. It consists of internal dynamics of a unit,
interaction among the units, and the dynamics to change the dynamics itself,
for example by replication (and death) of units according to their internal
states. Applying the dynamics to cell differentiation, isologous
diversification theory is proposed. According to it, orbital instability leads
to diversified cell behaviors first. At the next stage, several cell types are
formed, first triggered by clustering of oscillations, and then as attracting
states of internal dynamics stabilized by the cell-to-cell interaction. At the
third stage, the differentiation is determined as a recursive state by cell
division. At the last stage, hierarchical differentiation proceeds, with the
emergence of stochastic rule for the differentiation to sub-groups, where
regulation of the probability for the differentiation provides the diversity
and stability of cell society. Relevance of the theory to cell biology is
discussed.Comment: 19 pages, Int.J. Mod. Phes. B (in press
The finite tiling problem is undecidable in the hyperbolic plane
In this paper, we consider the finite tiling problem which was proved
undecidable in the Euclidean plane by Jarkko Kari in 1994. Here, we prove that
the same problem for the hyperbolic plane is also undecidable
Dynamics of Turing patterns under spatio-temporal forcing
We study, both theoretically and experimentally, the dynamical response of
Turing patterns to a spatio-temporal forcing in the form of a travelling wave
modulation of a control parameter. We show that from strictly spatial
resonance, it is possible to induce new, generic dynamical behaviors, including
temporally-modulated travelling waves and localized travelling soliton-like
solutions. The latter make contact with the soliton solutions of P. Coullet
Phys. Rev. Lett. {\bf 56}, 724 (1986) and provide a general framework which
includes them. The stability diagram for the different propagating modes in the
Lengyel-Epstein model is determined numerically. Direct observations of the
predicted solutions in experiments carried out with light modulations in the
photosensitive CDIMA reaction are also reported.Comment: 6 pages, 5 figure
Formation of regular spatial patterns in ratio-dependent predator-prey model driven by spatial colored-noise
Results are reported concerning the formation of spatial patterns in the
two-species ratio-dependent predator-prey model driven by spatial
colored-noise. The results show that there is a critical value with respect to
the intensity of spatial noise for this system when the parameters are in the
Turing space, above which the regular spatial patterns appear in two
dimensions, but under which there are not regular spatial patterns produced. In
particular, we investigate in two-dimensional space the formation of regular
spatial patterns with the spatial noise added in the side and the center of the
simulation domain, respectively.Comment: 4 pages and 3 figure
Finding the center reliably: robust patterns of developmental gene expression
We investigate a mechanism for the robust identification of the center of a
developing biological system. We assume the existence of two morphogen
gradients, an activator emanating from the anterior, and a co-repressor from
the posterior. The co-repressor inhibits the action of the activator in
switching on target genes. We apply this system to Drosophila embryos, where we
predict the existence of a hitherto undetected posterior co-repressor. Using
mathematical modelling, we show that a symmetric activator-co-repressor model
can quantitatively explain the precise mid-embryo expression boundary of the
hunchback gene, and the scaling of this pattern with embryo size.Comment: 4 pages, 3 figure
- …
