8,549 research outputs found

    Pristine CNO abundances from Magellanic Cloud B stars II. Fast rotators in the LMC cluster NGC 2004

    Full text link
    We present spectroscopic abundance analyses of three main-sequence B stars in the young Large Magellanic Cloud cluster NGC 2004. All three targets have projected rotational velocities around 130 km/s. Techniques are presented that allow the derivation of stellar parameters and chemical abundances in spite of these high v sin i values. Together with previous analyses of stars in this cluster, we find no evidence among the main-sequence stars for effects due to rotational mixing up to v sin i around 130 km/s. Unless the equatorial rotational velocities are significantly larger than the v sin i values, this finding is probably in line with theoretical expectations. NGC 2004/B30, a star of uncertain evolutionary status located in the Blue Hertzsprung Gap, clearly shows signs of mixing in its atmosphere. To verify the effects due to rotational mixing will therefore require homogeneous analysis of statistically significant samples of low-metallicity main-sequence B stars over a wide range of rotational velocities.Comment: 12 pages, 5 figures, 2 tables; accepted for publication in ApJ (vol. 633, p. 899

    Atomic Diffusion and Mixing in Old Stars. III. Analysis of NGC 6397 Stars under New Constraints

    Full text link
    We have previously reported on chemical abundance trends with evolutionary state in the globular cluster NGC 6397 discovered in analyses of spectra taken with FLAMES at the VLT. Here, we reinvestigate the FLAMES-UVES sample of 18 stars, ranging from just above the turnoff point (TOP) to the red giant branch below the bump. Inspired by new calibrations of the infrared flux method, we adopt a set of hotter temperature scales. Chemical abundances are determined for six elements (Li, Mg, Ca, Ti, Cr, and Fe). Signatures of cluster-internal pollution are identified and corrected for in the analysis of Mg. On the modified temperature scales, evolutionary trends in the abundances of Mg and Fe are found to be significant at the 2{\sigma} and 3{\sigma} levels, respectively. The detailed evolution of abundances for all six elements agrees with theoretical isochrones, calculated with effects of atomic diffusion and a weak to moderately strong efficiency of turbulent mixing. The age of these models is compatible with the external determination from the white dwarf cooling sequence. We find that the abundance analysis cannot be reconciled with the strong turbulent-mixing efficiency inferred elsewhere for halo field stars. A weak mixing efficiency reproduces observations best, indicating a diffusion-corrected primordial lithium abundance of log {\epsilon}(Li) = 2.57 +- 0.10. At 1.2{\sigma}, this value agrees well with WMAP-calibrated Big-Bang nucleosynthesis predictions.Comment: 14 pages, 5 figures, accepted by Ap

    A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars

    Full text link
    A comprehensive model atom for Fe with more than 3000 energy levels is presented. As a test and first application of this model atom, Fe abundances are determined for the Sun and five stars with well determined stellar parameters and high-quality observed spectra. Non-LTE leads to systematically depleted total absorption in the Fe I lines and to positive abundance corrections in agreement with the previous studies, however, the magnitude of non-LTE effect is smaller compared to the earlier results. Non-LTE corrections do not exceed 0.1 dex for the solar metallicity and mildly metal-deficient stars, and they vary within 0.21 dex and 0.35 dex in the very metal-poor stars HD 84937 and HD 122563, respectively, depending on the assumed efficiency of collisions with hydrogen atoms. Based on the analysis of the Fe I/Fe II ionization equilibrium in these two stars, we recommend to apply the Drawin formalism in non-LTE studies of Fe with a scaling factor of 0.1. For the Fe II lines, non-LTE corrections do not exceed 0.01 dex in absolute value. The solar non-LTE abundance obtained from 54 Fe I lines is 7.56+-0.09 and the abundance from 18 Fe II lines varies between 7.41+-0.11 and 7.56+-0.05 depending on the source of the gf-values. Thus, gf-values available for the iron lines are not accurate enough to pursue high-accuracy absolute abundance determinations. Lines of Fe I give, on average, a 0.1 dex lower abundance compared to those of Fe II lines for HD 61421 and HD 102870, even when applying a differential analysis relative to the Sun. A disparity between Fe I and Fe II points to problems of stellar atmosphere modelling or/and effective temperature determination.Comment: 19 pages, 8 figures, online material, accepted by A&

    Spinning Q-balls in the complex signum-Gordon model

    Full text link
    Rotational excitations of compact Q-balls in the complex signum-Gordon model in 2+1 dimensions are investigated. We find that almost all such spinning Q-balls have the form of a ring of strictly finite width. In the limit of large angular momentum M_z their energy is proportional to |M_z|^(1/5).Comment: 10 page

    Sulphur abundances in metal-poor stars

    Full text link
    We investigate the debated "sulphur discrepancy" found among metal-poor stars of the Galactic halo with [Fe/H] < -2. This discrepancy stems in part from the use of two different sets of sulphur lines, the very weak triplet at 8694-95 A and the stronger triplet lines at 9212 - 9237 A. For three representative cases of metal-poor dwarf, turnoff and subgiant stars, we argue that the abundances from the 8694-95 lines have been overestimated which has led to a continually rising trend of [S/Fe] as metallicity decreases. Given that the near-IR region is subject to CCD fringing, these weak lines become excessively difficult to measure accurately in the metallicity regime of [Fe/H] < -2. Based on homogeneously determined spectroscopic stellar parameters, we also present updated [S/Fe] ratios from the 9212-9237 lines which suggest a plateau-like behaviour similar to that seen for other alpha elements.Comment: accepted by A&A, 4 pages, 3 tables, 1 figure; v2: Table2 updated with metallicities from other work

    Axion Dark Matter and Cosmological Parameters

    Full text link
    We observe that photon cooling after big bang nucleosynthesis (BBN) but before recombination can remove the conflict between the observed and theoretically predicted value of the primordial abundance of 7^7Li. Such cooling is ordinarily difficult to achieve. However, the recent realization that dark matter axions form a Bose-Einstein condensate (BEC) provides a possible mechanism, because the much colder axions may reach thermal contact with the photons. This proposal predicts a high effective number of neutrinos as measured by the cosmic microwave anisotropy spectrum.Comment: 4 pages, one figure. Version to appear in Phys. Rev. Lett., incorporating useful comments by the referees and emphasizing that photon cooling by axion BEC is a possibility, not a certaint

    Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    Full text link
    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bolometric flux seem to be accurate to 5% or better, which contributes about 1% or less to the uncertainties in effective temperature. The comparisons of parameter determinations with the literature show in general good agreements with a few exceptions, most notably for the coolest stars and for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants. Among the FGK stars, 21 have reliable parameters suitable for testing, validation, or calibration purposes. For four stars, future adjustments of the fundamental Teff are required, and for five stars the logg determination needs to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are required to fill gaps in parameter space, and we include a list of suggested candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures; language correcte
    • …
    corecore