136 research outputs found

    Hamiltonian Formulation of Two Body Problem in Wheeler-Feynman electrodynamics

    Get PDF
    A Hamiltonian formulation for the classical problem of electromagnetic interaction of two charged relativistic particles is found.Comment: 22 pages, 8 Uuencoded Postscript figure

    Quantum-classical crossover in electrodynamics

    Get PDF
    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-see can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.Comment: new references added, few sign errors fixed, to appear in Physical Review

    Isomorphic controllers and Dynamic Tuning: invariant fingering over a tuning continuum

    Get PDF
    The tuning invariance is where the relationship among the intervals of a given scale remain the same over a range of tunings but requires that the frequency differences are glossed over to expose the similarities. Tuning invariance can be a musically useful property by enabling dynamic tuning which is the real-time changes to the tuning of all sounded notes as a tuning variable changes along a smooth continuum. The mathematical and perceptual abstractions that are the prerequisite of this dynamic tuning are greatly discussed. Other topics being discussed include the identification of the note layouts that are tuning invariant, the meaning of the "same" across a range of tunings for a given interval and the definition of "range of tunings" for a given temperament

    Hamiltonian Formalism for Space-time Non-commutative Theories

    Get PDF
    Space-time non-commutative theories are non-local in time. We develop the Hamiltonian formalism for non-local field theories in d space-time dimensions by considering auxiliary d+1 dimensional field theories which are local with respect to the evolution time. The Hamiltonian path integral quantization is considered and the Feynman rules in the Lagrangian formalism are derived. The case of non-commutative \phi^3 theory is considered as an example.Comment: 6 pages, A new section is added with other comments and references. To appear in PR

    A relativistic action-at-a-distance description of gravitational interactions?

    Full text link
    It is shown that certain aspects of gravitation may be described using a relativistic action-at-a-distance formulation. The equations of motion of the model presented are invariant under Lorentz transformations and agree with the equations of Einstein's theory of General Relativity, at the first Post-Newtonian approximation, for any number of interacting point masses

    Gyroscope precession in cylindrically symmetric spacetimes

    Get PDF
    We present calculations of gyroscope precession in spacetimes described by Levi-Civita and Lewis metrics, under different circumstances. By doing so we are able to establish a link between the parameters of the metrics and observable quantities, providing thereby a physical interpretation for those parameters, without specifying the source of the field.Comment: 13 pages, Latex. To appear in Class.Q.Gra

    Harmonic Pulse Testing for Well Monitoring: application to a fractured geothermal reservoir

    Get PDF
    Harmonic Pulse Testing (HPT) has been developed as a type of well testing applicable during ongoing field operations because a pulsed signal is superimposed on background pressure trend. Its purpose is to determine well and formation parameters such as wellbore storage, skin, permeability and boundaries within the investigated volume. Compared to conventional well testing, HPT requires more time to investigate the same reservoir volume. The advantage is that it does not require the interruption of well and reservoir injection/production before and/or during the test because it allows the extraction of an interpretable periodic signal from measured pressure potentially affected by interference. This makes it an ideal monitoring tool. Interpretation is streamlined through diagnostic plots mimicking conventional well test interpretation methods. To this end, analytical solutions in the frequency domain are available. The methodology was applied to monitor stimulation operations performed at an Enhanced Geothermal System (EGS) site in Pohang, Korea. The activities were divided into two steps: first a preliminary sequence of tests, injection/fall‐off and two HPTs, characterized by low injection rates and dedicated to estimate permeability prior to stimulation operations; then stimulation sequence characterized by higher injection rate. During the stimulation operations other HPTs were performed to monitor formation properties behavior. The interpretation of HPT data through the derivative approach implemented in the frequency domain provided reliable results in agreement with the injection test. Moreover, it provided an estimation of hydraulic properties without cessation of stimulation operations, thus confirming the effectiveness of HPT application for monitoring purposes

    Stochastic Gravity

    Get PDF
    Gravity is treated as a stochastic phenomenon based on fluctuations of the metric tensor of general relativity. By using a (3+1) slicing of spacetime, a Langevin equation for the dynamical conjugate momentum and a Fokker-Planck equation for its probability distribution are derived. The Raychaudhuri equation for a congruence of timelike or null geodesics leads to a stochastic differential equation for the expansion parameter θ\theta in terms of the proper time ss. For sufficiently strong metric fluctuations, it is shown that caustic singularities in spacetime can be avoided for converging geodesics. The formalism is applied to the gravitational collapse of a star and the Friedmann-Robertson-Walker cosmological model. It is found that owing to the stochastic behavior of the geometry, the singularity in gravitational collapse and the big-bang have a zero probability of occurring. Moreover, as a star collapses the probability of a distant observer seeing an infinite red shift at the Schwarzschild radius of the star is zero. Therefore, there is a vanishing probability of a Schwarzschild black hole event horizon forming during gravitational collapse.Comment: Revised version. Eq. (108) has been modified. Additional comments have been added to text. Revtex 39 page

    Heliographic longitude distribution of the flares associated with type III bursts observed at kilometric wavelengths

    Full text link
    We have grouped observed type III solar bursts according to the discrete frequencies of observation in the kilometric wavelength range. For each group we have obtained the bursts' frequency of occurrence as a function of the heliographic longitude of the associated optical flares. We found that flares occurring east of a certain cutoff longitude do not produce bursts observable near the earth below a given frequency. The cutoff on the west is determined by observational limitation for flares beyond the limb. The mean longitude and the extreme eastern end of the longitude distribution both shift to the west as the radio frequency decreases. We interpret these findings in terms of radio wave propagation effects and curved trajectories of the bursts' exciter particles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43732/1/11207_2004_Article_BF00152824.pd

    ADM canonical formalism for gravitating spinning objects

    Full text link
    In general relativity, systems of spinning classical particles are implemented into the canonical formalism of Arnowitt, Deser, and Misner [1]. The implementation is made with the aid of a symmetric stress-energy tensor and not a 4-dimensional covariant action functional. The formalism is valid to terms linear in the single spin variables and up to and including the next-to-leading order approximation in the gravitational spin-interaction part. The field-source terms for the spinning particles occurring in the Hamiltonian are obtained from their expressions in Minkowski space with canonical variables through 3-dimensional covariant generalizations as well as from a suitable shift of projections of the curved spacetime stress-energy tensor originally given within covariant spin supplementary conditions. The applied coordinate conditions are the generalized isotropic ones introduced by Arnowitt, Deser, and Misner. As applications, the Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, recently obtained by Damour, Jaranowski, and Schaefer [2], is rederived and the derivation of the next-to-leading order gravitational spin(1)-spin(2) Hamiltonian, shown for the first time in [3], is presented.Comment: REVTeX4, 18 pages. v1: published version. v2: corrected misprints in (8.4) and (9.3), updated reference
    corecore