3,538 research outputs found

    Cosmic-Ray Induced Diffuse Emissions from the Milky Way and Local Group Galaxies

    Full text link
    Cosmic rays fill up the entire volume of galaxies, providing an important source of heating and ionisation of the interstellar medium, and may play a significant role in the regulation of star formation and galactic evolution. Diffuse emissions from radio to high-energy gamma rays (> 100 MeV) arising from various interactions between cosmic rays and the interstellar medium, interstellar radiation field, and magnetic field, are currently the best way to trace the intensities and spectra of cosmic rays in the Milky Way and other galaxies. In this contribution, I describe our recent work to model the full spectral energy distribution of galaxies like the Milky Way from radio to gamma-ray energies. The application to other galaxies, in particular the Magellanic Clouds and M31 that are detected in high-energy gamma-rays by the Fermi-LAT, is also discussed.Comment: Contribution to "The Spectral Energy Distribution of Galaxies" Proceedings IAU Symposium No. 284, 2011, eds. R.J. Tuffs & C.C.Popescu. 4 pages with 4 figure

    Search for variable gamma-ray emission from the Galactic plane in the Fermi data

    Full text link
    High-energy gamma-ray emission from the Galactic plane above ~100 MeV is composed of three main contributions: diffuse emission from cosmic ray interactions in the interstellar medium, emission from extended sources, such as supernova remnants and pulsar wind nebulae, and emission from isolated compact source populations. The diffuse emission and emission from the extended sources provide the dominant contribution to the flux almost everywhere in the inner Galaxy, preventing the detection of isolated compact sources. In spite of this difficulty, compact sources in the Galactic plane can be singled out based on the variability properties of their gamma-ray emission. Our aim is to find sources in the Fermi data that show long-term variability. We performed a systematic study of the emission variability from the Galactic plane, by constructing the variability maps. We find that emission from several directions along the Galactic plane is significantly variable on a time scale of months. These directions include, in addition to known variable Galactic sources and background blazars, the Galactic ridge region at positive Galactic longitudes and several regions containing young pulsars. We argue that variability on the time scale of months may be common to pulsars, originating from the inner parts of pulsar wind nebulae, similarly to what is observed in the Crab pulsar.Comment: 4 pages, 4 figures, accepted to Astronomy & Astrophysic

    Gamma-ray emission from AGNs

    Full text link
    Blazars, radio-loud active galactic nuclei with the relativistic jet closely aligned with the line of sight, dominate the extragalactic sky observed at gamma-ray energies, above 100 MeV. We discuss some of the emission properties of these sources, focusing in particular on the "blazar sequence" and the interpretative models of the high-energy emission of BL Lac objects.Comment: 8 pages, 4 figures, to appear in the proceedings of the HEPRO II conference, Buenos Aires, October 26-30 200

    On leptonic models for blazars in the Fermi era

    Full text link
    Some questions raised by Fermi-LAT data about blazars are summarized, along with attempts at solutions within the context of leptonic models. These include both spectral and statistical questions, including the origin of the GeV breaks in low-synchrotron peaked blazars, the location of the gamma-ray emission sites, the correlations in the spectral energy distributions with luminosity, and the difficulty of synchrotron/SSC models to fit the spectra of some TeV blazars.Comment: 9 pages, 1 figure, in "Beamed and Unbeamed Gamma Rays from Galaxies," Muonio, Finland, 11-15 April, 2011, ed. R. Wagner, L. Maraschi, A. Sillanpaa, to appear in Journal of Physics: Conference Serie

    Conservative upper limits on WIMP annihilation cross section from Fermi-LAT Îł\gamma-rays

    Get PDF
    The spectrum of an isotropic extragalactic Îł\gamma-ray background (EGB) has been measured by the Fermi-LAT telescope at high latitudes. Two new models for the EGB are derived from the subtraction of unresolved point sources and extragalactic diffuse processes, which could explain from 30% to 70% of the Fermi-LAT EGB. Within the hypothesis that the two residual EGBs are entirely due to the annihilation of dark matter (DM) particles in the Galactic halo, we obtain conservativeconservative upper limits on their annihilation cross section \sigmav. Severe bounds on a possible Sommerfeld enhancement of the annihilation cross section are set as well. Finally, would {\sigmav} be inversely proportional to the WIMP velocity, very severe limits are derived for the velocity-independent part of the annihilation cross section.Comment: Proceedings of XII Taup Conference, Munich, September 201

    Spectral Lags Obtained by CCF of Smoothed Lightcurves

    Full text link
    We present a new technique to calculate the spectral lags of gamma-ray bursts (GRBs). Unlike previous processing methods, we first smooth the light curves of gamma-ray bursts in high and low energy bands using the "Loess" filter, then, we directly define the spectral lags as such to maximize the cross-correlation function (CCF) between two smoothed light curves. This method is suitable for various shapes of CCF; it effectively avoids the errors caused by manual selections for the fitting function and fitting interval. Using the method, we have carefully measured the spectral lags of individual pulses contained in BAT/Swift gamma-ray bursts with known redshifts, and confirmed the anti-correlation between the spectral lag and the isotropy luminosity. The distribution of spectral lags can be well fitted by four Gaussian components, with the centroids at 0.03 s, 0.09 s, 0.15 s, and 0.21 s, respectively. We find that some spectral lags of the multi-peak GRBs seem to evolve with time

    The bright unidentified gamma-ray source 1FGL J1227.9-4852: Can it be associated with an LMXB?

    Full text link
    We present an analysis of high energy (HE; 0.1-300 GeV) gamma-ray observations of 1FGL J1227.9-4852 with the Fermi Gamma-ray Space Telescope, follow-up radio observations with the Australia Telescope Compact Array, Giant Metrewave Radio Telescope and Parkes radio telescopes of the same field and follow-up optical observations with the ESO VLT. We also examine archival XMM-Newton and INTEGRAL X-ray observations of the region around this source. The gamma-ray spectrum of 1FGL J1227.9-4852 is best fit with an exponentially cutoff power-law, reminiscent of the population of pulsars observed by Fermi. A previously unknown, compact radio source within the 99.7% error circle of 1FGL J1227.9-4852 is discovered and has a morphology consistent either with an AGN core/jet structure or with two roughly symmetric lobes of a distant radio galaxy. A single bright X-ray source XSS J12270-4859, a low-mass X-ray binary, also lies within the 1FGL J1227.9-4852 error circle and we report the first detection of radio emission from this source. The potential association of 1FGL J1227.9-4852 with each of these counterparts is discussed. Based upon the available data we find the association of the gamma-ray source to the compact double radio source unlikely and suggest that XSS J12270-4859 is a more likely counterpart to the new HE source. We propose that XSS J12270-4859 may be a millisecond binary pulsar and draw comparisons with PSR J1023+0038.Comment: Accepted for publication in MNRAS; 9 pages, 8 figures, 2 table

    Polarization and photometric observations of the gamma-ray blazar PG 1553+113

    Get PDF
    We present the results of an observational photo-polarimetry campaign of the blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at very high energies (> 100 GeV) by the H.E.S.S and MAGIC gamma-ray Cherenkov telescopes. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Changes in the polarization angle seem to be common in gamma-ray emitting blazars. Simultaneous differential photometry (through the B and R bands) shows no significant variability in the total optical flux. We provide B and R magnitudes, along with a finding chart, for a set of field stars suitable for differential photometry.Comment: 4 pages, 3 figures. To be published by Astronomy and Astrophysic
    • 

    corecore