242 research outputs found

    Ionospheric conductances derived from satellite measurements of auroral UV and X-ray emissions, and ground-based electromagnetic data: a comparison

    No full text
    International audienceGlobal instantaneous conductance maps can be derived from remote sensing of UV and X-ray emissions by the UVI and PIXIE cameras on board the Polar satellite. Another technique called the 1-D method of characteristics provides mesoscale instantaneous conductance profiles from the MIRACLE ground-based network in Northern Scandinavia, using electric field measurements from the STARE coherent scatter radar and ground magnetometer data from the IMAGE network. The method based on UVI and PIXIE data gives conductance maps with a resolution of ~800km in space and ~4.5min in time, while the 1-D method of characteristics establishes conductances every 20s and with a spatial resolution of ~50km. In this study, we examine three periods with substorm activity in 1998 to investigate whether the two techniques converge when the results from the 1-D method of characteristics are averaged over the spatial and temporal resolution of the UVI/PIXIE data. In general, we find that the calculated conductance sets do not correlate. However, a fairly good agreement may be reached when the ionosphere is in a state that does not exhibit strong local turbulence. By defining a certain tolerance level of turbulence, we show that 14 of the 15 calculated conductance pairs during relatively uniform ionospheric conditions differ less than ±30%. The same is true for only 4 of the 9 data points derived when the ionosphere is in a highly turbulent state. A correlation coefficient between the two conductance sets of 0.27 is derived when all the measurements are included. By removing the data points from time periods when too much ionospheric turbulence occurs, the correlation coefficient raises to 0.57. Considering the two very different techniques used in this study to derive the conductances, with different assumptions, limitations and scale sizes, our results indicate that simple averaging of mesoscale results allows a continuous transition to large-scale results. Therefore, it is possible to use a combined approach to study ionospheric events with satellite optical and ground-based electrodynamic data of different spatial and temporal resolutions. We must be careful, though, when using these two techniques during disturbed conditions. The two methods will only give results that systematically converge when relatively uniform conditions exist

    The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2005

    Full text link
    The Earth Orientation Center of the IERS, located at Paris Observatory, SYRTE, has the task to provide to the scientific community the international reference time series for the Earth Orientation Parameters (EOP), referred as ”IERS C04 ” (Combined 04), resulting from a combination of operational EOP series, each of them associated with a given geodetic technique. The procedure developed to derive the C04 solution was recently upgraded back to 1993. The main objective is to insurre its consistency with respect to the newly release ITRF 2008. Due to the separate determination of both terrestrial reference frames and EOP, there has been a slow degradation of the overall consistency since the least ITRF release in 2005, and discrepancies at the level of 50 micoarseconds for x pole coordinate exists between the current IERS C04 and the ITRF realization. We have taken this opportunity to upgrade the numerical combination procedure. Now there are better estimates of the errors of combined values. Individual EOP series have been reprocessed since 1993. Pole coordinates are now fully consistent with ITRF. The new C04 solution, referred as 08 C04, updated two times per week became the official C04 solution since february 2010

    Instantaneous ionospheric global conductance maps during an isolated substorm

    No full text
    International audienceData from the Polar Ionospheric X-ray Imager (PIXIE) and the Ultraviolet Imager (UVI) on board the Polar satellite have been used to provide instantaneous global conductance maps. In this study, we focus on an isolated substorm event occurring on 31 July 1997. From the PIXIE and the UVI measurements, the energy spectrum of the precipitating electrons can be derived. By using a model of the upper atmosphere, the resulting conductivity values are generated. We present global maps of how the 5 min time-averaged height-integrated Hall and Pedersen conductivities vary every 15 min during this isolated substorm. The method presented here enables us to study the time development of the conductivities, with a spatial resolution of ~ 700 km. During the substorm, a single region of enhanced Hall conductance is observed. The Hall conductance maximum remains situated between latitudes 64 and 70 corrected geomagnetic (CGM) degrees and moves eastward. The strongest conductances are observed in the pre-midnight sector at the start of the substorm expansion. Toward the end of the substorm expansion and into the recovery phase, we find the Hall conductance maximum in the dawn region. We also observe that the Hall to Pedersen conductance ratio for the regions of maximum Hall conductance is increasing throughout the event, indicating a hardening of the electron spectrum. By combining PIXIE and UVI measurements with an assumed energy distribution, we can cover the whole electron energy range responsible for the conductances. Electrons with energies contributing most to the Pedersen conductance are well covered by UVI while PIXIE captures the high energetic component of the precipitating electrons affecting the Hall conductance. Most statistical conductance models have derived conductivities from electron precipitation data below approximately 30 keV. Since the intensity of the shortest UVI-wavelengths (LBHS) decreases significantly at higher electron energies, the UVI electron energy range is more or less comparable with the energy ranges of the statistical models. By calculating the conductivities from combined PIXIE and UVI measurements to compare with the conductivities from using UVI data only, we observe significant differences in the Hall conductance. The greatest differences are observed in the early evening and the late morning sector. We therefore suggest that the existing statistical models underestimate the Hall conductance

    GS305+04-26:Revisiting the ISM around the CenOB1 stellar association

    Get PDF
    Massive stars deeply modify their surrounding ISM via their high throughput of ionizing photons and their strong stellar winds. In this way they may create large expanding structures of neutral gas. We study a new large HI shell, labelled GS305+04-26, and its relationship with the OB association CenOB1. To carry out this study we have used a multi-wavelenght approach. We analyze neutral hydrogen (HI) line data retrieved from the Leiden-Argentina-Bonn (LAB) survey, new spectroscopic optical observations obtained at CASLEO, and make use of proper motion databases available via Internet. The analysis of the HI data reveals a large expanding structure GS305+04-26 centered at (l,b)=(305^{\degr}, +4^{\degr}) in the velocity range from -33 to -17 km/s. Based on its central velocity, -26 km/s, and using standard galactic rotation models, a distance of 2.5(+-)0.9 kpc is inferred. This structure, elliptical in shape, has major and minor axis of 440 and 270 pc, respectively. Its expansion velocity, total gaseous mass, and kinetic energy are ~8 km/s, (2.4(+-)0.5)x10^5 Mo, and (1.6(+-)0.4)x10^{50} erg, respectively. Several stars of the OB-association CenOB1 are seen projected onto, and within, the boundaries of GS305+04-26. Based on an analysis of proper motions, new members of CenOB1 are identified. The mechanical energy injected by these stars could have been the origin of this HI structure.Comment: 14 pages, 6 figures, A&A (in press

    Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    Get PDF
    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA

    On the Role of Dust in the Lunar Ionosphere

    Get PDF
    Evidence suggests that electron concentrations above the dayside lunar surface can be significantly higher than expected from either the photo-ionization of exospheric neutrals or any other well-known process. The Luna 19 mission performed dual-frequency radio occultation experiments in order to determine electron column concentrations above the lunar limb as a function of tangent height (shown in the figure below), The resulting electron concentration profiles surprisingly indicated a peak of approx.500-1000/cu cm and scale heights of approx. 10-30 km. It has been suggested that electrically charged exospheric dust could contribute to these electron cnhancemcnts2 , Here we describe how to estimate the electrons produced by photo-charged dust, which is then used to predict electron concentrations from exospheric dust distribution models that are based on the "excess brightness" observed in Apollo 15 coronal photographs. The results indicate that radio occultation measurements likely provide a valuable perspective on the role of dust in the lunar environment

    Towards the fabrication of phosphorus qubits for a silicon quantum computer

    Full text link
    The quest to build a quantum computer has been inspired by the recognition of the formidable computational power such a device could offer. In particular silicon-based proposals, using the nuclear or electron spin of dopants as qubits, are attractive due to the long spin relaxation times involved, their scalability, and the ease of integration with existing silicon technology. Fabrication of such devices however requires atomic scale manipulation - an immense technological challenge. We demonstrate that it is possible to fabricate an atomically-precise linear array of single phosphorus bearing molecules on a silicon surface with the required dimensions for the fabrication of a silicon-based quantum computer. We also discuss strategies for the encapsulation of these phosphorus atoms by subsequent silicon crystal growth.Comment: To Appear in Phys. Rev. B Rapid Comm. 5 pages, 5 color figure
    corecore