95 research outputs found
Pandemic and the constitutional law in the Czech Republic
The Covid or Chinese flu pandemic put a number of countries in a state of emergency. Whether this state is explicitly a state of emergency is not decisive, since various legal systems use various terms, but it is decisive that in respect of its power the Czech state uses collective and blanket bans to regulate persons differently than under normal conditions.
The article deals with the impact of the Covid pandemic on the legal system. It points out to the deficiencies in the current legislation. Its basic idea is that the fundamental legal solution to states of emergency must be represented by constitutional regulation. It determines areas in which the Constitutional Act on the Security of the Czech Republic should be amended. Constitutional embodiment of emergency lawmaking with executive power is suggested along with introducing controls by the Chamber of Deputies and with obligatory inspection of emergency legislation acts by the Constitutional Court. It is also suggested for a form of legislation to be thoroughly used for blanket bans and orders in preference to a form of a special administrative decision â measure of a general nature.
The experience with the Covid pandemic approved that the legal solution to a crisis must stem in the constitutional legislation. A regular act cannot represent the basis. This constitutional legislation may in the future also be the constitutional act on security. Although it is appropriate to amend it in the following areas:
1. Introduce the possibility of emergency legislation issued by the executive power.
2. Introduce parliamentary review of individual emergency legislation acts.
3. Introduce mandatory review of emergency legislation acts by the Constitutional Court.
4. In the case of general bans issued by the Ministry of Health amend their provisions from general nature to sublegal regulation
Long-term changes (1990â2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions
The international Long-Term Ecological Research Network (ILTER) encompasses hundreds of long-term research/monitoring sites located in a wide array of ecosystems that can help us understand environmental change across the globe. We evaluated long-term trends (1990â2015) for bulk deposition, throughfall and runoff water chemistry and fluxes, and climatic variables in 25 forested catchments in Europe belonging to the UNECE International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). Many of the IM sites form part of the monitoring infrastructures of this larger ILTER network. Trends were evaluated for monthly concentrations of non-marine (anthropogenic fraction, denoted as x) sulphate (xSO4) and base cations x(Ca + Mg), hydrogen ion (H+), inorganic N (NO3 and NH4) and ANC (Acid Neutralising Capacity) and their respective fluxes into and out of the catchments and for monthly precipitation, runoff and air temperature. A significant decrease of xSO4 deposition resulted in decreases in concentrations and fluxes of xSO4 in runoff, being significant at 90% and 60% of the sites, respectively. Bulk deposition of NO3 and NH4 decreased significantly at 60â80% (concentrations) and 40â60% (fluxes) of the sites. Concentrations and fluxes of NO3 in runoff decreased at 73% and 63% of the sites, respectively, and NO3 concentrations decreased significantly at 50% of the sites. Thus, the LTER/ICP IM network confirms the positive effects of the emission reductions in Europe. Air temperature increased significantly at 61% of the sites, while trends for precipitation and runoff were rarely significant. The site-specific variation of xSO4 concentrations in runoff was most strongly explained by deposition. Climatic variables and deposition explained the variation of inorganic N concentrations in runoff at single sites poorly, and as yet there are no clear signs of a consistent deposition-driven or climate-driven increase in inorganic N exports in the catchments.Long-term changes (1990â2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditionsacceptedVersio
A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts
AimThis Red List is a summary of the conservation status of the European species of mosses, liverworts and hornworts, collectively known as bryophytes, evaluated according to IUCNâs Guidelines for Application of IUCN Red List Criteria at Regional Level. It provides the first comprehensive, region-wide assessment of bryophytes and it identifies those species that are threatened with extinction at a European level, so that appropriate policy measures and conservation actions, based on the best available evidence, can be taken to improve their status.ScopeAll bryophytes native to or naturalised in Europe (a total of 1,817 species), have been included in this Red List. In Europe, 1,796 species were assessed, with the remaining 21 species considered Not Applicable (NA). For the EU 28, 1,728 species were assessed, with a remaining 20 species considered NA and 69 species considered Not Evaluated (NE). The geographical scope is continentwide, extending from Iceland in the west to the Urals in the east, and from Franz Josef Land in the north to theCanary Islands in the south. The Caucasus region is not included. Red List assessments were made at two regional levels: for geographical Europe and for the 28 Member States of the European Union.ResultsOverall, 22.5% of European bryophyte species assessed in this study are considered threatened in Europe, with two species classified as Extinct and six assessed as Regionally Extinct (RE). A further 9.6% (173 species) are considered Near Threatened and 63.5% (1,140 species) are assessed as Least Concern. For 93 species (5.3%), there was insufficient information available to be able to evaluate their risk of extinction and thus they were classified as Data Deficient (DD). The main threats identified were natural system modifications (i.e., dam construction, increases in fire frequency/intensity, and water management/use), climate change (mainly increasing frequency of droughts and temperature extremes), agriculture (including pollution from agricultural effluents) and aquaculture.RecommendationsPolicy measuresâą Use the European Red List as the scientific basis to inform regional/national lists of rare and threatened species and to identify priorities for conservation action in addition to the requirements of the Habitats Directive, thereby highlighting the conservation status of bryophytes at the regional/local level.âą Use the European Red List to support the integration of conservation policy with the Common Agricultural Policy (CAP) and other national and international policies. For example, CAP Strategic Plans should include biodiversity recovery commitments that could anticipate, among others, the creation of Important Bryophyte Areas. An increased involvement of national environmental agencies in the preparation of these strategic plans, and more broadly in ongoing discussions on the Future CAP Green Architecture, would likely also ensure the design of conservation measures better tailored to conserve bryophytes in agricultural landscapes.âą Update the European Red List every decade to ensure that the data remains current and relevant.âą Develop Key Biodiversity Areas for bryophytes in Europe with a view to ensuring adequate site-based protection for bryophytes.Research and monitoringâą Use the European Red List as a basis for future targeted fieldwork on possibly extinct and understudied species.âą Establish a monitoring programme for targeted species (for example, threatened species and/or arable bryophytes).âą Use the European Red List to obtain funding for research into the biology and ecology of key targeted species.Action on the groundâą Use the European Red List as evidence to support multi-scale conservation initiatives, including designation of protected areas, reform of agricultural practices and land management, habitat restoration and rewilding, and pollution reduction measures.âą Use the European Red List as a tool to target species that would benefit the most from the widespread implementation of the solutions offered by the 1991 Nitrates Directive (Council Directive 91/676/EEC), including the application of correct amounts of nutrients for each crop, only in periods of crop growth under suitable climatic conditions and never during periods of heavy rainfall or on frozen ground, and the creation of buffer zones to protect waters from run-off from the application of fertilizers.Ex situ conservationâą Undertake ex situ conservation of species of conservation concern in botanic gardens and spore and gene banks, with a view to reintroduction where appropriate.</p
Exploring the impact of fossil constraints on the divergence time estimates of derived liverworts
In this study, we evaluate the impact of fossil assignments and different models of calibration on divergence time estimates carried out as Bayesian analyses. Estimated ages from preceding studies and liverwort inclusions from Baltic amber are used as constraints on a molecular phylogeny of Cephaloziineae (Jungermanniopsida) obtained from sequences of two chloroplast coding regions: rbcL and psbA. In total, the comparison of 12 different analyses demonstrates that an increased reliability of the chronograms is linked to the number of fossils assigned and to the accuracy of their assignments. Inclusion of fossil constraints leads to older ages of most crown groups, but has no influence on lineage through time plots suggesting a nearly constant accumulation of diversity since the origin of Cephaloziineae in the early to Middle Jurassic. Our results provide a note of caution regarding the interpretation of chronograms derived from DNA sequence variation of extant species based on a single calibration point and/or low accuracy of the assignment of fossils to nodes in the phylogeny
Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated pesticides in background air in central Europe - investigating parameters affecting wet scavenging of polycyclic aromatic hydrocarbons
Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and chlorinated pesticides (CPs) were measured in air and precipitation at a background site in central Europe. Sigma PAH concentrations in air and rainwater ranged from 0.7 to 327.9 ng m(-3) and below limit of quantification (< LOQ) to 2.1 x 10(3) ng L-1. The concentrations of PCBs and CPs in rainwater were < LOQ. Sigma PCB and Sigma CP concentrations in air ranged from < LOQ to 44.6 and < LOQ to 351.7 pg m(-3), respectively. The potential relationships between PAH wet scavenging and particulate matter and rainwater properties were investigated. The concentrations of ionic species in particulate matter and rainwater were significantly correlated, highlighting the importance of particle scavenging process. Overall, higher scavenging efficiencies were found for relatively less volatile PAHs, underlining the effect of analyte gas-particle partitioning on scavenging process. The particulate matter removal by rain, and consequently PAH wet scavenging, was more effective when the concentrations of ionic species were high. In addition, the elemental and organic carbon contents of the particulate matter were found to influence the PAH scavenging
- âŠ