7,779 research outputs found

    Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction

    Full text link
    A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer could see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts and give the conditions under which its action is unitary.Comment: 12 pages, 3 figure

    The century of the incomplete revolution: searching for general relativistic quantum field theory

    Get PDF
    In fundamental physics, this has been the century of quantum mechanics and general relativity. It has also been the century of the long search for a conceptual framework capable of embracing the astonishing features of the world that have been revealed by these two ``first pieces of a conceptual revolution''. I discuss the general requirements on the mathematics and some specific developments towards the construction of such a framework. Examples of covariant constructions of (simple) generally relativistic quantum field theories have been obtained as topological quantum field theories, in nonperturbative zero-dimensional string theory and its higher dimensional generalizations, and as spin foam models. A canonical construction of a general relativistic quantum field theory is provided by loop quantum gravity. Remarkably, all these diverse approaches have turn out to be related, suggesting an intriguing general picture of general relativistic quantum physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu

    Graviton propagator from background-independent quantum gravity

    Full text link
    We study the graviton propagator in euclidean loop quantum gravity, using the spinfoam formalism. We use boundary-amplitude and group-field-theory techniques, and compute one component of the propagator to first order, under a number of approximations, obtaining the correct spacetime dependence. In the large distance limit, the only term of the vertex amplitude that contributes is the exponential of the Regge action: the other terms, that have raised doubts on the physical viability of the model, are suppressed by the phase of the vacuum state, which is determined by the extrinsic geometry of the boundary.Comment: 6 pages. Substantially revised second version. Improved boundary state ansat

    Compatibility of radial, Lorenz and harmonic gauges

    Full text link
    We observe that the radial gauge can be consistently imposed \emph{together} with the Lorenz gauge in Maxwell theory, and with the harmonic traceless gauge in linearized general relativity. This simple observation has relevance for some recent developments in quantum gravity where the radial gauge is implicitly utilized.Comment: 9 pages, minor changes in the bibliograph

    The complete LQG propagator: II. Asymptotic behavior of the vertex

    Full text link
    In a previous article we have show that there are difficulties in obtaining the correct graviton propagator from the loop-quantum-gravity dynamics defined by the Barrett-Crane vertex amplitude. Here we show that a vertex amplitude that depends nontrivially on the intertwiners can yield the correct propagator. We give an explicit example of asymptotic behavior of a vertex amplitude that gives the correct full graviton propagator in the large distance limit.Comment: 16 page

    A simple background-independent hamiltonian quantum model

    Full text link
    We study formulation and probabilistic interpretation of a simple general-relativistic hamiltonian quantum system. The system has no unitary evolution in background time. The quantum theory yields transition probabilities between measurable quantities (partial observables). These converge to the classical predictions in the ℏ→0\hbar\to 0 limit. Our main tool is the kernel of the projector on the solutions of Wheeler-deWitt equation, which we analyze in detail. It is a real quantity, which can be seen as a propagator that propagates "forward" as well as "backward" in a local parameter time. Individual quantum states, on the other hand, may contain only "forward propagating" components. The analysis sheds some light on the interpretation of background independent transition amplitudes in quantum gravity

    The Evolution of Λ\Lambda Black Holes in the Mini-Superspace Approximation of Loop Quantum Gravity

    Full text link
    Using the improved quantization technique to the mini-superspace approximation of loop quantum gravity, we study the evolution of black holes supported by a cosmological constant. The addition of a cosmological constant allows for classical solutions with planar, cylindrical, toroidal and higher genus black holes. Here we study the quantum analog of these space-times. In all scenarios studied, the singularity present in the classical counter-part is avoided in the quantized version and is replaced by a bounce, and in the late evolution, a series of less severe bounces. Interestingly, although there are differences during the evolution between the various symmetries and topologies, the evolution on the other side of the bounce asymptotes to space-times of Nariai-type, with the exception of the planar black hole analyzed here, whose TT-RR=constant subspaces seem to continue expanding in the long term evolution. For the other cases, Nariai-type universes are attractors in the quantum evolution, albeit with different parameters. We study here the quantum evolution of each symmetry in detail.Comment: 26 pages, 7 figures.V2 has typos corrected, references added, and a more careful analysis of the planar case. Accepted for publication in Physical Review

    Relational evolution of the degrees of freedom of generally covariant quantum theories

    Get PDF
    We study the classical and quantum dynamics of generally covariant theories with vanishing a Hamiltonian and with a finite number of degrees of freedom. In particular, the geometric meaning of the full solution of the relational evolution of the degrees of freedom is displayed, which means the determination of the total number of evolving constants of motion required. Also a method to find evolving constants is proposed. The generalized Heinsenberg picture needs M time variables, as opposed to the Heisenberg picture of standard quantum mechanics where one time variable t is enough. As an application, we study the parameterized harmonic oscillator and the SL(2,R) model with one physical degree of freedom that mimics the constraint structure of general relativity where a Schrodinger equation emerges in its quantum dynamics.Comment: 25 pages, no figures, Latex file. Revised versio

    Implications of the gauge-fixing in Loop Quantum Cosmology

    Full text link
    The restriction to invariant connections in a Friedmann-Robertson-Walker space-time is discussed via the analysis of the Dirac brackets associated with the corresponding gauge fixing. This analysis allows us to establish the proper correspondence between reduced and un-reduced variables. In this respect, it is outlined how the holonomy-flux algebra coincides with the one of Loop Quantum Gravity if edges are parallel to simplicial vectors and the quantization of the model is performed via standard techniques by restricting admissible paths. Within this scheme, the discretization of the area spectrum is emphasized. Then, the role of the diffeomorphisms generator in reduced phase-space is investigated and it is clarified how it implements homogeneity on quantum states, which are defined over cubical knots. Finally, the perspectives for a consistent dynamical treatment are discussed.Comment: 7 pages, accepted for publication in Physical Review
    • …
    corecore