Using the improved quantization technique to the mini-superspace
approximation of loop quantum gravity, we study the evolution of black holes
supported by a cosmological constant. The addition of a cosmological constant
allows for classical solutions with planar, cylindrical, toroidal and higher
genus black holes. Here we study the quantum analog of these space-times. In
all scenarios studied, the singularity present in the classical counter-part is
avoided in the quantized version and is replaced by a bounce, and in the late
evolution, a series of less severe bounces. Interestingly, although there are
differences during the evolution between the various symmetries and topologies,
the evolution on the other side of the bounce asymptotes to space-times of
Nariai-type, with the exception of the planar black hole analyzed here, whose
T-R=constant subspaces seem to continue expanding in the long term
evolution. For the other cases, Nariai-type universes are attractors in the
quantum evolution, albeit with different parameters. We study here the quantum
evolution of each symmetry in detail.Comment: 26 pages, 7 figures.V2 has typos corrected, references added, and a
more careful analysis of the planar case. Accepted for publication in
Physical Review