1,926 research outputs found

    Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

    Get PDF
    The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an H-Mode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm(-3) at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E x B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten.EURATOM 63305

    Determination of tungsten sources in the JET-ILW divertor by spectroscopic imaging in the presence of a strong plasma continuum

    Get PDF
    The identification of the sources of atomic tungsten and the measurement of their radiation distribution in front of all plasma-facing components has been performed in JET with the help of two digital cameras with the same two-dimensional view, equipped with interference filters of different bandwidths centred on the W I (400.88 nm) emission line. A new algorithm for the subtraction of the continuum radiation was successfully developed and is now used to evaluate the W erosion even in the inner divertor region where the strong recombination emission is dominating over the tungsten emission. Analysis of W sputtering and W redistribution in the divertor by video imaging spectroscopy with high spatial resolution for three different magnetic configurations was performed. A strong variation of the emission of the neutral tungsten in toroidal direction and corresponding W erosion has been observed. It correlates strongly with the wetted area with a maximal W erosion at the edge of the divertor tile.EURATOM 63305

    First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall

    Get PDF
    ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.EURATOM 63305

    An analytical expression for ion velocities at the wall including the sheath electric field and surface biasing for erosion modeling at JET ILW

    Get PDF
    For simulation of plasma-facing component erosion in fusion experiments, an analytical expression for the ion velocity just before the surface impact including the local electric field and an optional surface biasing effect is suggested. Energy and angular impact distributions and the resulting effective sputtering yields were produced for several experimental scenarios at JET ILW mostly involving PFCs exposed to an oblique magnetic field. The analytic solution has been applied as an improvement to earlier ERO mod- elling of localized, Be outer limiter, RF-enhanced erosion, modulated by toggling of a remote, however magnetically connected ICRH antenna. The effective W sputtering yields due to D and Be ion impact in Type-I and Type-III ELMs and inter-ELM conditions were also estimated using the analytical approach and benchmarked by spectroscopy. The intra-ELM W sputtering flux increases almost 10 times in comparison to the inter-ELM flux.EURATOM 63305

    ERO modelling of tungsten erosion in the linear plasma device PSI-2

    Get PDF
    Proceedings of the 22nd International Conference on Plasma Surface Interactions 2016, 22nd PSISeries of experiments on tungsten (W) erosion and transport in Argon (Ar) plasma were conducted at the linear plasma device PSI-2. W erosion was measured with three independent methods: WΙ spectroscopy, mass loss and quartz micro-balance (QMB) deposition sensor. Consistent set of data produced in these experiments was interpreted using the 3D ERO code simulations, which have reproduced all the main trends observed. Influence of the physical model assumptions (e.g. energy and angular distributions of sputtered particles) was demonstrated. The effect of WΙ effective quasi-metastable (MS) state population dynamics on spectroscopy measurements is shown; the characteristic relaxation time is determined. The measured physical sputtering yields for W are close to the simulated data obtained in the binary collision approximation (BCA) approach (SDTrimSP code). The remaining discrepancies between simulations and the experiment, mostly in spectroscopy, are accounted to the uncertainties in the plasma parameters and atomic data.Peer reviewe

    Comparative H-mode density limit studies in JET and AUG

    Get PDF
    Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another. Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l -mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/n GW =0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation. It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to l -mode. The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL.EURATOM 63305

    High power neon seeded JET discharges: Experiments and simulations

    Get PDF
    A series of neon seeded JET ELMy H-mode pulses is considered from the modeling as well as from the experimental point of view. For two different Ne seeding rates and two different D puffing gas levels the heating power, P heat , is in the range 22–29.5 MW. The main focus is on the numerical reconstruction of the total radiated power (which mostly depends on the W concentration) and its distribution between core and divertor and of Z eff(which mostly depends on the Ne concentration). To model self-consistently the core and the SOL two input parameters had to be adjusted case by case: the SOL diffusivity, D SOL , and the core impurity inward pinch, v pinch . D SOL had to be increased with increasing Ne and the level of v pinch had to be changed, for any given Ne , according to the level of P heat : it decreases with increasing P heat . Since the ELM frequency, f ELM , is experimentally correlated with P heat , (it increases with P heat ) the impurity inward pinch can be seen as to depend on f ELM . Therefore, to maintain a low v pinch level (i.e. high f ELM ) Ne / P heat should not exceed a certain threshold, which slightly increases with the D puffing rate. This might lead to a limitation in the viability of reducing the target heat load by Ne seeding at moderate D , while keeping Z effat acceptably low level.EURATOM 63305

    Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall

    Get PDF
    For the ITER-like wall, the JET mirror link divertor spectroscopy system was redesigned to fully cover the tungsten horizontal strike plate with faster time resolution and improved near-UV performance. Since the ITER-like wall project involves a change in JET from a carbon dominated machine to a beryllium and tungsten dominated machine with residual carbon, the aim of the system is to provide the recycling flux, equivalent, to the impinging deuterium ion flux, the impurity fluxes (C, Be, O) and tungsten sputtering fluxes and hence give information on the tungsten divertor source. In order to do this self-consistently, the system also needs to provide plasma characterization through the deuterium Balmer spectra measurements of electron density and temperature during high density. L-Mode results at the density limit from Stark broadening/line ratio analysis will be presented and compared to Langmuir probe profiles and 2D-tomography of low-n Balmer emission [1]. Comparison with other diagnostics will be vital for modelling attempts with the EDGE2D-EIRENE code[2] as the best possible data sets need to be provided to study detachment behaviour.Comment: 18 pages, 11 figure
    corecore