75,497 research outputs found
Molecular mechanics and molecular dynamics analysis of Drexler-Merkle gears and neon pump
Over the past two years at the Materials and Process Simulation Center, we have been developing simulation approaches for studying the molecular nanomachine designs pioneered by Drexler and Merkle. These nanomachine designs, such as planetary gears and neon pump, are described with atomistic details and involve up to 10 000 atoms.
With the Dreiding and universal force fields, we have optimized the structures of the two planetary gear designs and the neon pump. At the Fourth Foresight conference, we reported rotational impulse dynamics studies of the first and second generation designs of planetary gears undergoing very high-frequency rotational motions. We will explore stability of these designs in the lower frequency regimes which require long time simulations. We will report the molecular mechanics and molecular dynamics simulations performed on these model systems. We explore the following modes in these studies: (1) impulse mode; (2) constant angular velocity - perpetual rotation; (3) constant torque - acceleration from rest
A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties
We propose a simultaneous quantum secure direct communication scheme between
one party and other three parties via four-particle GHZ states and swapping
quantum entanglement. In the scheme, three spatially separated senders, Alice,
Bob and Charlie, transmit their secret messages to a remote receiver Diana by
performing a series local operations on their respective particles according to
the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell
measurement results, Diana can infer the secret messages. If a perfect quantum
channel is used, the secret messages are faithfully transmitted from Alice, Bob
and Charlie to Diana via initially shared pairs of four-particle GHZ states
without revealing any information to a potential eavesdropper. As there is no
transmission of the qubits carrying the secret message in the public channel,
it is completely secure for the direct secret communication. This scheme can be
considered as a network of communication parties where each party wants to
communicate secretly with a central party or server.Comment: 4 pages, no figur
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
Effective potentials for atom-atom interaction at low temperatures
We discuss the concept and design of effective atom-atom potentials that
accurately describe any physical processes involving only states around the
threshold. The existence of such potentials gives hope to a quantitative, and
systematic, understanding of quantum few-atom and quantum many-atom systems at
relatively low temperatures.Comment: 4 pages, 4 figure
From k-essence to generalised Galileons
We determine the most general scalar field theories which have an action that
depends on derivatives of order two or less, and have equations of motion that
stay second order and lower on flat space-time. We show that those theories can
all be obtained from linear combinations of Lagrangians made by multiplying a
particular form of the Galileon Lagrangian by an arbitrary scalar function of
the scalar field and its first derivatives. We also obtain curved space-time
extensions of those theories which have second order field equations for both
the metric and the scalar field. This provide the most general extension, under
the condition that field equations stay second order, of k-essence, Galileons,
k-Mouflage as well as of the kinetically braided scalars. It also gives the
most general action for a scalar classicalizer, which has second order field
equations. We discuss the relation between our construction and the Euler
hierachies of Fairlie et al, showing in particular that Euler hierachies allow
one to obtain the most general theory when the latter is shift symmetric. As a
simple application of our formalism, we give the covariantized version of the
conformal Galileon.Comment: 25 page
Consistency of shared reference frames should be reexamined
In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501
(2007)], four protocols were proposed to secretly transmit a reference frame.
Here We point out that in these protocols an eavesdropper can change the
transmitted reference frame without being detected, which means the consistency
of the shared reference frames should be reexamined. The way to check the above
consistency is discussed. It is shown that this problem is quite different from
that in previous protocols of quantum cryptography.Comment: 3 pages, 1 figure, comments are welcom
Atomic radius and charge parameter uncertainty in biomolecular solvation energy calculations
Atomic radii and charges are two major parameters used in implicit solvent
electrostatics and energy calculations. The optimization problem for charges
and radii is under-determined, leading to uncertainty in the values of these
parameters and in the results of solvation energy calculations using these
parameters. This paper presents a new method for quantifying this uncertainty
in implicit solvation calculations of small molecules using surrogate models
based on generalized polynomial chaos (gPC) expansions. There are relatively
few atom types used to specify radii parameters in implicit solvation
calculations; therefore, surrogate models for these low-dimensional spaces
could be constructed using least-squares fitting. However, there are many more
types of atomic charges; therefore, construction of surrogate models for the
charge parameter space requires compressed sensing combined with an iterative
rotation method to enhance problem sparsity. We demonstrate the application of
the method by presenting results for the uncertainties in small molecule
solvation energies based on these approaches. The method presented in this
paper is a promising approach for efficiently quantifying uncertainty in a wide
range of force field parameterization problems, including those beyond
continuum solvation calculations.The intent of this study is to provide a way
for developers of implicit solvent model parameter sets to understand the
sensitivity of their target properties (solvation energy) on underlying choices
for solute radius and charge parameters
- …