39 research outputs found

    Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia

    Get PDF
    In the present study, we analysed the expression and localization of p21Waf1/Cip1 in normal and malignant haematopoietic cells. We demonstrate that in normal monocytic cells, protein kinase C (PKC)-induced p21 gene activation, which is nuclear factor-ÎșB (NF-ÎșB) independent, results in predominantly cytoplasmic localized p21 protein. In acute monocytic leukaemia (M4, M5), monocytic blasts (N=12) show constitutive cytoplasmic p21 expression in 75% of the cases, while in myeloid leukaemic blasts (N=10), low nuclear and cytoplasmic localization of p21 could be detected, which is also PKC dependent. Constitutive p21 expression in monocytic leukaemia might have important antiapoptotic functions. This is supported by the finding that in U937 cells overexpressing p21, VP16-induced apoptosis is significantly reduced (20.0±0.9 vs 55.8±3.8%, P<0.01, N=5), reflected by a reduced phosphorylation of p38 and JNK. Similarly, AML blasts with high cytoplasmic p21 were less sensitive to VP16-induced apoptosis as compared to AML cases with low or undetectable p21 expression (42.25 vs 12.3%, P<0.01). Moreover, complex formation between p21 and ASK1 could be demonstrated in AML cells, by means of coimmunoprecipitation. In summary, these results indicate that p21 has an antiapoptotic role in monocytic leukaemia, and that p21 expression is regulated in a PKC-dependent and NF-ÎșB independent manner.

    Overexpression of Protein Kinase C Confers Protection Against Antileukemic Drugs by Inhibiting the Redox-Dependent Sphingomyelinase Activation

    Get PDF
    ABSTRACT Induction of apoptosis by chemotherapeutic drugs involves the sphingomyelin-ceramide (SM-CER) pathway. This signaling is critically dependent on reactive oxygen species (ROS) generation and p53/p56 Lyn activation. In this study, we have investigated the influence of protein kinase C (PKC) overexpression on the SM-CER pathway in U937 human leukemia cell line. We show that PKC overexpression resulted in delayed apoptosis and significant resistance to both 1-␀-D-arabinofuranosylcytosine (ara-C) and daunorubicin (DNR), but there was no significant protection against cell-permeant C 6 -CER. Moreover, PKC overexpression abrogated drug-induced neutral sphingomyelinase stimulation and CER generation by inhibiting ROS production. We further investigated p53/p56 Lyn activation in PKC-overexpressing U937 cells treated with ara-C or DNR. We demonstrate that PKC inhibited p53/p56 Lyn phosphorylation and stimulation in drug-or H 2 O 2 -treated cells, suggesting that p53/p56 Lyn redox regulation is altered in PKC-overexpressing cells. Finally, we show that PKC-overexpressing U937 cells displayed accelerated H 2 O 2 detoxification. Altogether, our study provides evidence for the role of PKC in the negative regulation of drug-induced SM-CER pathway

    Stress biology:Complexity and multifariousness in health and disease

    Get PDF
    Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.</p

    Post-GWAS Functional Characterization of Susceptibility Variants for Chronic Lymphocytic Leukemia

    Get PDF
    Recent genome-wide association studies (GWAS) have identified several gene variants associated with sporadic chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Many of these CLL/SLL susceptibility loci are located in non-coding or intergenic regions, posing a significant challenge to determine their potential functional relevance. Here, we review the literature of all CLL/SLL GWAS and validation studies, and apply eQTL analysis to identify putatively functional SNPs that affect gene expression that may be causal in the pathogenesis of CLL/SLL. We tested 12 independent risk loci for their potential to alter gene expression through cis-acting mechanisms, using publicly available gene expression profiles with matching genotype information. Sixteen SNPs were identified that are linked to differential expression of SP140, a putative tumor suppressor gene previously associated with CLL/SLL. Three additional SNPs were associated with differential expression of DACT3 and GNG8, which are involved in the WNT/ÎČ-catenin- and G protein-coupled receptor signaling pathways, respectively, that have been previously implicated in CLL/SLL pathogenesis. Using in silico functional prediction tools, we found that 14 of the 19 significant eQTL SNPs lie in multiple putative regulatory elements, several of which have prior implications in CLL/SLL or other hematological malignancies. Although experimental validation is needed, our study shows that the use of existing GWAS data in combination with eQTL analysis and in silico methods represents a useful starting point to screen for putatively causal SNPs that may be involved in the etiology of CLL/SLL

    TNFα stimulates NKG2D-mediated lytic activity of acute myeloid leukemic cells

    No full text
    International audienc

    Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity

    No full text
    Heat shock protein 27 (HSP27) accumulates in stressed cells and helps them to survive adverse conditions. We have already shown that HSP27 has a function in the ubiquitination process that is modulated by its oligomerization/phosphorylation status. Here, we show that HSP27 is also involved in protein sumoylation, a ubiquitination-related process. HSP27 increases the number of cell proteins modified by small ubiquitin-like modifier (SUMO)-2/3 but this effect shows some selectivity as it neither affects all proteins nor concerns SUMO-1. Moreover, no such alteration in SUMO-2/3 conjugation is achievable by another HSP, such as HSP70. Heat shock factor 1 (HSF1), a transcription factor responsible for HSP expression, is one of the targets of HSP27. In stressed cells, HSP27 enters the nucleus and, in the form of large oligomers, binds to HSF1 and induces its modification by SUMO-2/3 on lysine 298. HSP27-induced HSF1 modification by SUMO-2/3 takes place downstream of the transcription factor phosphorylation on S303 and S307 and does not affect its DNA-binding ability. In contrast, this modification blocks HSF1 transactivation capacity. These data show that HSP27 exerts a feedback inhibition of HSF1 transactivation and enlighten the strictly regulated interplay between HSPs and HSF1. As we also show that HSP27 binds to the SUMO-E2-conjugating enzyme, Ubc9, our study raises the possibility that HSP27 may act as a SUMO-E3 ligase specific for SUMO-2/3

    HSP110 promotes colorectal cancer growth through STAT3 activation

    Full text link
    Heat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer cell proliferation and that this effect is associated with STAT3 activation, specifically an increase in STAT3 phosphorylation, nuclear translocation and transcription factor activity. STAT3 inhibition blocks the proliferative effect of HSP110. From a molecular standpoint, we demonstrated that HSP110 directly binds to STAT3, thereby facilitating its phosphorylation by JAK2. Finally, we showed a correlation between HSP110 expression and STAT3 phosphorylation in colon cancer patient samples. Thus, the expression of HSP110 in colon cancer contributes to STAT3-dependent tumor growth and the frequent inactivating mutation of this chaperone is probably an important event underlying the improved prognosis in colon cancer displaying MSI

    HSP110 promotes colorectal cancer growth through STAT3 activation.

    No full text
    IF 7.932International audienceHeat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110-inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer cell proliferation and that this effect is associated with STAT3 activation, specifically an increase in STAT3 phosphorylation, nuclear translocation and transcription factor activity. STAT3 inhibition blocks the proliferative effect of HSP110. From a molecular standpoint, we demonstrated that HSP110 directly binds to STAT3, thereby facilitating its phosphorylation by JAK2. Finally, we showed a correlation between HSP110 expression and STAT3 phosphorylation in colon cancer patient samples. Thus, the expression of HSP110 in colon cancer contributes to STAT3-dependent tumor growth and the frequent inactivating mutation of this chaperone is probably an important event underlying the improved prognosis in colon cancer displaying MSI

    Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes.

    No full text
    Normal human erythroid cell maturation requests the transcription factor GATA-1 and a transient activation of caspase-3, with GATA-1 being protected from caspase-3-mediated cleavage by interaction with the chaperone heat shock protein 70 (Hsp70) in the nucleus. Erythroid cell dysplasia observed in early myelodysplastic syndromes (MDS) involves impairment of differentiation and excess of apoptosis with a burst of caspase activation. Analysis of gene expression in MDS erythroblasts obtained by ex vivo cultures demonstrates the down-regulation of a set of GATA-1 transcriptional target genes, including GYPA that encodes glycophorin A (GPA), and the up-regulation of members of the HSP70 family. GATA-1 protein expression is decreased in MDS erythroblasts, but restores in the presence of a pan-caspase inhibitor. Expression of a mutated GATA-1 that cannot be cleaved by caspase-3 rescues the transcription of GATA-1 targets, and the erythroid differentiation, but does not improve survival. Hsp70 fails to protect GATA-1 from caspases because the protein does not accumulate in the nucleus with active caspase-3. Expression of a nucleus-targeted mutant of Hsp70 protects GATA-1 and rescues MDS erythroid cell differentiation. Alteration of Hsp70 cytosolic-nuclear shuttling is a major feature of MDS that favors GATA-1 cleavage and differentiation impairment, but not apoptosis, in dysplastic erythroblasts
    corecore