322 research outputs found
Magnetoelliptic Instabilities
We consider the stability of a configuration consisting of a vertical
magnetic field in a planar flow on elliptical streamlines in ideal
hydromagnetics. In the absence of a magnetic field the elliptical flow is
universally unstable (the ``elliptical instability''). We find this universal
instability persists in the presence of magnetic fields of arbitrary strength,
although the growthrate decreases somewhat. We also find further instabilities
due to the presence of the magnetic field. One of these, a destabilization of
Alfven waves, requires the magnetic parameter to exceed a certain critical
value. A second, involving a mixing of hydrodynamic and magnetic modes, occurs
for all magnetic-field strengths. These instabilities may be important in
tidally distorted or otherwise elliptical disks. A disk of finite thickness is
stable if the magnetic fieldstrength exceeds a critical value, similar to the
fieldstrength which suppresses the magnetorotational instability.Comment: Accepted for publication in Astrophysical Journa
Generation of the Primordial Magnetic Fields during Cosmological Reionization
We investigate the generation of magnetic field by the Biermann battery in
cosmological ionization fronts, using new simulations of the reionization of
the universe by stars in protogalaxies. Two mechanisms are primarily
responsible for magnetogenesis: i) the breakout of I-fronts from protogalaxies,
and ii) the propagation of I-fronts through the high density neutral filaments
which are part of the cosmic web. The first mechanism is dominant prior to
overlapping of ionized regions (z ~ 7), whereas the second continues to operate
even after that epoch. However, after overlap the field strength increase is
largely due to the gas compression occurring as cosmic structures form. As a
consequence, the magnetic field at z ~ 5 closely traces the gas density, and it
is highly ordered on megaparsec scales. The mean mass-weighted field strength
is B_0 ~ 10^{-19} G in the simulation box. There is a relatively well-defined,
nearly linear correlation between B_0 and the baryonic mass of virialized
objects, with B_0 ~ 10^{-18} G in the most massive objects (M ~ 10^9 M_sun) in
our simulations. This is a lower limit, as lack of numerical resolution
prevents us from following small scale dynamical processes which could amplify
the field in protogalaxies. Although the field strengths we compute are
probably adequate as seed fields for a galactic dynamo, the field is too small
to have had significant effects on galaxy formation, on thermal conduction, or
on cosmic ray transport in the intergalactic medium. It could, however, be
observed in the intergalactic medium through innovative methods based on
analysis of gamma-ray burst photon arrival times.Comment: accepted for publication in ApJ. MPEG movies and color versions of
figures are available at
http://casa.colorado.edu/~gnedin/GALLERY/magfi_p.htm
Direct Evidence for Two-Fluid Effects in Molecular Clouds
We present a combination of theoretical and simulation-based examinations of
the role of two-fluid ambipolar drift on molecular line widths. The dissipation
provided by ion-neutral interactions can produce a significant difference
between the widths of neutral molecules and the widths of ionic species,
comparable to the sound speed. We demonstrate that Alfven waves and certain
families of magnetosonic waves become strongly damped on scales comparable to
the ambipolar diffusion scale. Using the RIEMANN code, we simulate two-fluid
turbulence with ionization fractions ranging from 10^{-2} to 10^{-6}. We show
that the wave damping causes the power spectrum of the ion velocity to drop
below that of the neutral velocity when measured on a relative basis. Following
a set of motivational observations by Li & Houde (2008), we produce synthetic
line width-size relations that shows a difference between the ion and neutral
line widths, illustrating that two-fluid effects can have an observationally
detectable role in modifying the MHD turbulence in the clouds.Comment: 18 pages, 4 figures, submitted to MNRA
Detection of microgauss coherent magnetic fields in a galaxy five billion years ago
Magnetic fields play a pivotal role in the physics of interstellar medium in
galaxies, but there are few observational constraints on how they evolve across
cosmic time. Spatially resolved synchrotron polarization maps at radio
wavelengths reveal well-ordered large-scale magnetic fields in nearby galaxies
that are believed to grow from a seed field via a dynamo effect. To directly
test and characterize this theory requires magnetic field strength and geometry
measurements in cosmologically distant galaxies, which are challenging to
obtain due to the limited sensitivity and angular resolution of current radio
telescopes. Here, we report the cleanest measurements yet of magnetic fields in
a galaxy beyond the local volume, free of the systematics traditional
techniques would encounter. By exploiting the scenario where the polarized
radio emission from a background source is gravitationally lensed by a
foreground galaxy at z = 0.439 using broadband radio polarization data, we
detected coherent G magnetic fields in the lensing disk galaxy as seen 4.6
Gyrs ago, with similar strength and geometry to local volume galaxies. This is
the highest redshift galaxy whose observed coherent magnetic field property is
compatible with a mean-field dynamo origin.Comment: 29 pages, 5 figures (including Supplementary Information). Published
in Nature Astronomy on August 28, 201
The acceleration and propagation of solar flare energetic particles
Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented
Ambipolar Drift Heating in Turbulent Molecular Clouds
Although thermal pressure is unimportant dynamically in most molecular gas,
the temperature is an important diagnostic of dynamical processes and physical
conditions. This is the first of two papers on thermal equilibrium in molecular
clouds. We present calculations of frictional heating by ion-neutral (or
ambipolar) drift in three-dimensional simulations of turbulent, magnetized
molecular clouds.
We show that ambipolar drift heating is a strong function of position in a
turbulent cloud, and its average value can be significantly larger than the
average cosmic ray heating rate. The volume averaged heating rate per unit
volume due to ambipolar drift, H_AD ~ |JxB|^2 ~ B^4/L_B^2, is found to depend
on the rms Alfvenic Mach number, M_A, and on the average field strength, as
H_AD ~ M_A^2^4. This implies that the typical scale of variation of the
magnetic field, L_B, is inversely proportional to M_A, which we also
demonstrate.Comment: 37 pages, 9 figures include
Effects of Line-tying on Magnetohydrodynamic Instabilities and Current Sheet Formation
An overview of some recent progress on magnetohydrodynamic stability and
current sheet formation in a line-tied system is given. Key results on the
linear stability of the ideal internal kink mode and resistive tearing mode are
summarized. For nonlinear problems, a counterexample to the recent
demonstration of current sheet formation by Low \emph{et al}. [B. C. Low and
\AA. M. Janse, Astrophys. J. \textbf{696}, 821 (2009)] is presented, and the
governing equations for quasi-static evolution of a boundary driven, line-tied
magnetic field are derived. Some open questions and possible strategies to
resolve them are discussed.Comment: To appear in Phys. Plasma
- …