39 research outputs found

    A comparison of building value models for flood risk analysis

    Get PDF
    Quantitative flood risk analyses support decisions in flood management policies that aim for cost efficiency. Risk is commonly calculated by a combination of the three quantified factors: hazard, exposure and vulnerability. Our paper focuses on the quantification of exposure, in particular on the relevance of building value estimation schemes within flood exposure analyses on regional to national scales. We compare five different models that estimate the values of flood-exposed buildings. Four of them refer to individual buildings, whereas one is based on values per surface area, differentiated by land use category. That one follows an approach commonly used in flood risk analyses on regional or larger scales. Apart from the underlying concepts, the five models differ in complexity, data and computational expenses required for parameter estimations and in the data they require for model application.The model parameters are estimated by using a database of more than half a million building insurance contracts in Switzerland, which are provided by 11 (out of 19) cantonal insurance companies for buildings that operate under a monopoly within the respective Swiss cantons. Comparing the five model results with the directly applied spatially referenced insurance data suggests that models based on individual buildings produce better results than the model based on surface area, but only if they include an individual building's volume.Applying the five models to all of Switzerland produces results that are very similar with regard to the spatial distribution of exposed-building values. Therefore, for spatial prioritizations, simpler models are preferable. In absolute values, however, the five model results differ remarkably. The two simplest models underestimate the overall exposure, and even more so the extreme high values, upon which risk management strategies generally focus. In decision-making processes based on cost-efficiency, this underestimation would result in suboptimal resource allocation for protection measures. Consequently, we propose that estimating exposed-building values should be based on individual buildings rather than on areas of land use types. In addition, a building's individual volume has to be taken into account in order to provide a reliable basis for cost–benefit analyses. The consideration of other building features further improves the value estimation. However, within the context of flood risk management, the optimal value estimation model depends on the specific questions to be answered. The concepts of the presented building value models are generic. Thus, these models are transferable, with minimal adjustments according to the application's purpose and the data available. Within risk analyses, the paper's focus is on exposure. However, the findings also have direct implications for flood risk analyses as most risk analyses take the value of exposed assets into account in a linear way.</p

    Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads

    Get PDF
    The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management

    Avalanche related damage potential - changes of persons and mobile values since the mid-twentieth century, case study Galtür

    Get PDF
    When determining risk related to natural hazard processes, many studies neglect the investigations of the damage potential or are limited to the assessment of immobile values like buildings. However, persons as well as mobile values form an essential part of the damage potential. Knowledge of the maximum number of exposed persons in an endangered area is of great importance for elaborating evacuation plans and immediate measures in case of catastrophes. In addition, motor vehicles can also be highly damaged, as was shown by the analysis of avalanche events. With the removal of mobile values in time as a preventive measure this kind of damage can be minimised. <P style='line-height: 20px;'> This study presents a method for recording the maximum number of exposed persons and monetarily assessing motor vehicles in the municipality of Galt&#252;r (Tyrol, Austria). Moreover, general developments of the damage potential due to significant socio-economic changes since the mid-twentieth century are pointed out in the study area. The present situation of the maximum number of persons and mobile values in the official avalanche hazard zones of the municipality is described in detail. Information on the number of persons is derived of census data, tourism and employment statistics. During the winter months, a significant increase overlaid by strong short-term fluctuation in the number of persons can be noted. These changes result from a higher demand of tourism related manpower as well as from varying occupancy rates. The number of motor vehicles in endangered areas is closely associated to the number of exposed persons. The potential number of motor vehicles is investigated by means of mapping, statistics on the stock of motor vehicles and the density distribution. Diurnal and seasonal fluctuations of the investigated damage potential are pointed out. The recording of the number of persons and mobile values in endangered areas is vital for any disaster management

    Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation

    Get PDF
    The fatality risk caused by avalanches on road networks can be analysed using a long-term approach, resulting in a mean value of risk, and with emphasis on short-term fluctuations due to the temporal variability of both, the hazard potential and the damage potential. In this study, the approach for analysing the long-term fatality risk has been adapted by modelling the highly variable short-term risk. The emphasis was on the temporal variability of the damage potential and the related risk peaks. For defined hazard scenarios resulting from classified amounts of snow accumulation, the fatality risk was calculated by modelling the hazard potential and observing the traffic volume. The avalanche occurrence probability was calculated using a statistical relationship between new snow height and observed avalanche releases. The number of persons at risk was determined from the recorded traffic density. The method resulted in a value for the fatality risk within the observed time frame for the studied road segment. The long-term fatality risk due to snow avalanches as well as the short-term fatality risk was compared to the average fatality risk due to traffic accidents. The application of the method had shown that the long-term avalanche risk is lower than the fatality risk due to traffic accidents. The analyses of short-term avalanche-induced fatality risk provided risk peaks that were 50 times higher than the statistical accident risk. Apart from situations with high hazard level and high traffic density, risk peaks result from both, a high hazard level combined with a low traffic density and a high traffic density combined with a low hazard level. This provided evidence for the importance of the temporal variability of the damage potential for risk simulations on road networks. The assumed dependence of the risk calculation on the sum of precipitation within three days is a simplified model. Thus, further research is needed for an improved determination of the diurnal avalanche probability. Nevertheless, the presented approach may contribute as a conceptual step towards a risk-based decision-making in risk management

    LWDsimR - Simulation of large wood dynamics during an extreme flood in the Aare River upstream of Bern, Switzerland

    No full text
    Simulation of large wood dynamics during an extreme flood in the Aare River upstream of Bern, Switzerland This repository contains the code, the data, and the results of the simulation of woody debris transport during an extreme flood in the Aare River, Sitzerland. It should document the work done for the submitted paper "Modelling spatiotemporal dynamics of large wood recruitment, transport and deposition at river reach scale during extreme floods". The repository will be updated and documented after final publication

    The long-term development of avalanche risk in settlements considering the temporal variability of damage potential

    Get PDF
    Recent studies on the avalanche risk in alpine settlements suggested a strong dependency of the development of risk on variations in damage potential. Based on these findings, analyses on probable maximum losses in avalanche-prone areas of the municipality of Davos (CH) were used as an indicator for the long-term development of values at risk. Even if the results were subject to significant uncertainties, they underlined the dependency of today's risk on the historical development of land-use: Small changes in the lateral extent of endangered areas had a considerable impact on the exposure of values. In a second step, temporal variations in damage potential between 1950 and 2000 were compared in two different study areas representing typical alpine socio-economic development patterns: Davos (CH) and Galtür (A). The resulting trends were found to be similar; the damage potential increased significantly in number and value. Thus, the development of natural risk in settlements can for a major part be attributed to long-term shifts in damage potential

    Effects of variability in probable maximum precipitation patterns on flood losses

    Get PDF
    The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses

    Modelling woody material transport and deposition in alpine rivers

    Get PDF
    Recent flood events in Switzerland and Western Austria in 2005 were characterised by an increase in impacts and associated losses due to the transport of woody material. As a consequence, protection measures and bridges suffered considerable damages. Furthermore, cross-sectional obstructions due to woody material entrapment caused unexpected flood plain inundations resulting in severe damage to elements at risk. Until now, the transport of woody material is neither sufficiently taken into account nor systematically considered, leading to prediction inaccuracies during the procedure of hazard mapping. To close this gap, we propose a modelling approach that (1) allows the estimation of woody material recruitment from wood-covered banks and flood plains; (2) allows the evaluation of the disposition for woody material entrainment and transport to selected critical configurations along the stream and that (3) enables the delineation of hazard process patterns at these critical configurations. Results from a case study suggest the general applicability of the concept. This contribution to woody material transport analysis refines flood hazard assessments due to the consideration of woody material transport scenarios

    Blended Learning in ESP Methodology: WebQuest

    Get PDF
    The paper focuses on key issues of blended learning and introduces the idea of WebQuest and the adaptation of this approach in teaching ESP.Статья посвящена основным вопросам смешанного обучения (blended learning) и рассматривает возможности использования образовательной технологии WebQuest при обучении английскому языку профессионального общения
    corecore