135 research outputs found

    Yeast Sex: Surprisingly High Rates of Outcrossing between Asci

    Get PDF
    BACKGROUND: Saccharomyces yeasts are an important model system in many areas of biological research. Very little is known about their ecology and evolution in the wild, but interest in this natural history is growing. Extensive work with lab strains in the last century uncovered the Saccharomyces life cycle. When nutrient limited, a diploid yeast cell will form four haploid spores encased in a protective outer layer called the ascus. Confinement within the ascus is thought to enforce mating between products of the same meiotic division, minimizing outcrossing in this stage of the life cycle. METHODOLOGY/PRINCIPAL FINDINGS: Using a set of S. cerevisiae and S. paradoxus strains isolated from woodlands in North America, we set up trials in which pairs of asci were placed in contact with one another and allowed to germinate. We observed outcrossing in approximately 40% of the trials, and multiple outcrossing events in trials with three asci in contact with each other. When entire populations of densely crowded asci germinated, approximately 10-25% of the resulting colonies were outcrossed. There were differences between the species with S. cerevisiae having an increased tendency to outcross in mass mating conditions. CONCLUSIONS/SIGNIFICANCE: Our results highlight the potential for random mating between spores in natural strains, even in the presence of asci. If this type of mating does occur in nature and it is between close relatives, then a great deal of mating behavior may be undetectable from genome sequences

    Hypthesis and theory

    Get PDF
    Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements

    Aquatic birds have middle ears adapted to amphibious lifestyles

    Get PDF
    Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing

    Systematic quantification of gene interactions by phenotypic array analysis

    Get PDF
    A phenotypic array method, developed for quantifying cell growth, was applied to the haploid and homozygous diploid yeast deletion strain sets. A growth index was developed to screen for non-additive interacting effects between gene deletion and induced perturbations. From a genome screen for hydroxyurea (HU) chemical-genetic interactions, 298 haploid deletion strains were selected for further analysis. The strength of interactions was quantified using a wide range of HU concentrations affecting reference strain growth. The selectivity of interaction was determined by comparison with drugs targeting other cellular processes. Bio-modules were defined as gene clusters with shared strength and selectivity of interaction profiles. The functions and connectivity of modules involved in processes such as DNA repair, protein secretion and metabolic control were inferred from their respective gene composition. The work provides an example of, and a general experimental framework for, quantitative analysis of gene interaction networks that buffer cell growth

    Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

    Get PDF
    Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer

    Independent S-Locus Mutations Caused Self-Fertility in Arabidopsis thaliana

    Get PDF
    A common yet poorly understood evolutionary transition among flowering plants is a switch from outbreeding to an inbreeding mode of mating. The model plant Arabidopsis thaliana evolved to an inbreeding state through the loss of self-incompatibility, a pollen-rejection system in which pollen recognition by the stigma is determined by tightly linked and co-evolving alleles of the S-locus receptor kinase (SRK) and its S-locus cysteine-rich ligand (SCR). Transformation of A. thaliana, with a functional AlSRKb-SCRb gene pair from its outcrossing relative A. lyrata, demonstrated that A. thaliana accessions harbor different sets of cryptic self-fertility–promoting mutations, not only in S-locus genes, but also in other loci required for self-incompatibility. However, it is still not known how many times and in what manner the switch to self-fertility occurred in the A. thaliana lineage. Here, we report on our identification of four accessions that are reverted to full self-incompatibility by transformation with AlSRKb-SCRb, bringing to five the number of accessions in which self-fertility is due to, and was likely caused by, S-locus inactivation. Analysis of S-haplotype organization reveals that inter-haplotypic recombination events, rearrangements, and deletions have restructured the S locus and its genes in these accessions. We also perform a Quantitative Trait Loci (QTL) analysis to identify modifier loci associated with self-fertility in the Col-0 reference accession, which cannot be reverted to full self-incompatibility. Our results indicate that the transition to inbreeding occurred by at least two, and possibly more, independent S-locus mutations, and identify a novel unstable modifier locus that contributes to self-fertility in Col-0

    Effects of Ploidy and Recombination on Evolution of Robustness in a Model of the Segment Polarity Network

    Get PDF
    Many genetic networks are astonishingly robust to quantitative variation, allowing these networks to continue functioning in the face of mutation and environmental perturbation. However, the evolution of such robustness remains poorly understood for real genetic networks. Here we explore whether and how ploidy and recombination affect the evolution of robustness in a detailed computational model of the segment polarity network. We introduce a novel computational method that predicts the quantitative values of biochemical parameters from bit sequences representing genotype, allowing our model to bridge genotype to phenotype. Using this, we simulate 2,000 generations of evolution in a population of individuals under stabilizing and truncation selection, selecting for individuals that could sharpen the initial pattern of engrailed and wingless expression. Robustness was measured by simulating a mutation in the network and measuring the effect on the engrailed and wingless patterns; higher robustness corresponded to insensitivity of this pattern to perturbation. We compared robustness in diploid and haploid populations, with either asexual or sexual reproduction. In all cases, robustness increased, and the greatest increase was in diploid sexual populations; diploidy and sex synergized to evolve greater robustness than either acting alone. Diploidy conferred increased robustness by allowing most deleterious mutations to be rescued by a working allele. Sex (recombination) conferred a robustness advantage through “survival of the compatible”: those alleles that can work with a wide variety of genetically diverse partners persist, and this selects for robust alleles

    Incompatibilities Involving Yeast Mismatch Repair Genes: A Role for Genetic Modifiers and Implications for Disease Penetrance and Variation in Genomic Mutation Rates

    Get PDF
    Genetic background effects underlie the penetrance of most genetically determined phenotypes, including human diseases. To explore how such effects can modify a mutant phenotype in a genetically tractable system, we examined an incompatibility involving the MLH1 and PMS1 mismatch repair genes using a large population sample of geographically and ecologically diverse Saccharomyces cerevisiae strains. The mismatch repair incompatibility segregates into naturally occurring yeast strains, with no strain bearing the deleterious combination. In assays measuring the mutator phenotype conferred by different combinations of MLH1 and PMS1 from these strains, we observed a mutator phenotype only in combinations predicted to be incompatible. Surprisingly, intragenic modifiers could be mapped that specifically altered the strength of the incompatibility over a 20-fold range. Together, these observations provide a powerful model in which to understand the basis of disease penetrance and how such genetic variation, created through mating, could result in new mutations that could be the raw material of adaptive evolution in yeast populations

    Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency

    Get PDF
    As organisms adaptively evolve to a new environment, selection results in the improvement of certain traits, bringing about an increase in fitness. Trade-offs may result from this process if function in other traits is reduced in alternative environments either by the adaptive mutations themselves or by the accumulation of neutral mutations elsewhere in the genome. Though the cost of adaptation has long been a fundamental premise in evolutionary biology, the existence of and molecular basis for trade-offs in alternative environments are not well-established. Here, we show that yeast evolved under aerobic glucose limitation show surprisingly few trade-offs when cultured in other carbon-limited environments, under either aerobic or anaerobic conditions. However, while adaptive clones consistently outperform their common ancestor under carbon limiting conditions, in some cases they perform less well than their ancestor in aerobic, carbon-rich environments, indicating that trade-offs can appear when resources are non-limiting. To more deeply understand how adaptation to one condition affects performance in others, we determined steady-state transcript abundance of adaptive clones grown under diverse conditions and performed whole-genome sequencing to identify mutations that distinguish them from one another and from their common ancestor. We identified mutations in genes involved in glucose sensing, signaling, and transport, which, when considered in the context of the expression data, help explain their adaptation to carbon poor environments. However, different sets of mutations in each independently evolved clone indicate that multiple mutational paths lead to the adaptive phenotype. We conclude that yeasts that evolve high fitness under one resource-limiting condition also become more fit under other resource-limiting conditions, but may pay a fitness cost when those same resources are abundant
    corecore