428 research outputs found

    Neutral and ionic dopants in helium clusters: interaction forces for the Li2(a3Σu+)HeLi_2(a^3\Sigma_u^+)-He and Li2+(X2Σg+)HeLi_2^+(X^2\Sigma_g^+)-He

    Full text link
    The potential energy surface (PES) describing the interactions between Li2(1Σu+)\mathrm{Li_{2}(^{1}\Sigma_{u}^{+})} and 4He\mathrm{^{4}He} and an extensive study of the energies and structures of a set of small clusters, Li2(He)n\mathrm{Li_{2}(He)_{n}}, have been presented by us in a previous series of publications [1-3]. In the present work we want to extend the same analysis to the case of the excited Li2(a3Σu+)\mathrm{Li_{2}}(a^{3}\Sigma_{u}^{+}) and of the ionized Li2+(X2Σg+)_{2}^{+}(X^{2}\Sigma_{g}^{+}) moiety. We thus show here calculated interaction potentials for the two title systems and the corresponding fitting of the computed points. For both surfaces the MP4 method with cc-pV5Z basis sets has been used to generate an extensive range of radial/angular coordinates of the two dimensional PES's which describe rigid rotor molecular dopants interacting with one He partner

    Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy

    Get PDF
    Coherent atomic motions in materials can be revealed using time-resolved X-ray and electron Bragg diffraction. Because of the size of the beam used, typically on the micron scale, the detection of nanoscale propagating waves in extended structures hitherto has not been reported. For elastic waves of complex motions, Bragg intensities contain all polarizations and they are not straightforward to disentangle. Here, we introduce Kikuchi diffraction dynamics, using convergent-beam geometry in an ultrafast electron microscope, to selectively probe propagating transverse elastic waves with nanoscale resolution. It is shown that Kikuchi band shifts, which are sensitive only to the tilting of atomic planes, reveal the resonance oscillations, unit cell angular amplitudes, and the polarization directions. For silicon, the observed wave packet temporal envelope (resonance frequency of 33 GHz), the out-of-phase temporal behavior of Kikuchi's edges, and the magnitude of angular amplitude (0.3 mrad) and polarization [011] elucidate the nature of the motion: one that preserves the mass density (i.e., no compression or expansion) but leads to sliding of planes in the antisymmetric shear eigenmode of the elastic waveguide. As such, the method of Kikuchi diffraction dynamics, which is unique to electron imaging, can be used to characterize the atomic motions of propagating waves and their interactions with interfaces, defects, and grain boundaries at the nanoscale

    The stability of Killing-Cauchy horizons in colliding plane wave space-times

    Get PDF
    It is confirmed rigorously that the Killing-Cauchy horizons, which sometimes occur in space-times representing the collision and subsequent interaction of plane gravitational waves in a Minkowski background, are unstable with respect to bounded perturbations of the initial waves, at least for the case in which the initial waves have constant aligned polarizations.Comment: 8 pages. To appear in Gen. Rel. Gra

    Bosonic Helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations

    Get PDF
    Variational MonteCarlo and Diffusion MonteCarlo calculations have been carried out for cations like Li+^+, Na+^+ and K+^+ as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modelled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab-initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are here discussed in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the clusters features

    Practical sketching algorithms for low-rank matrix approximation

    Get PDF
    This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data

    Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

    Get PDF
    Several important applications, such as streaming PCA and semidefinite programming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a sequence of linear updates. Because of storage limitations, it may only be possible to retain a sketch of the psd matrix. This paper develops a new algorithm for fixed-rank psd approximation from a sketch. The approach combines the Nystrom approximation with a novel mechanism for rank truncation. Theoretical analysis establishes that the proposed method can achieve any prescribed relative error in the Schatten 1-norm and that it exploits the spectral decay of the input matrix. Computer experiments show that the proposed method dominates alternative techniques for fixed-rank psd matrix approximation across a wide range of examples

    Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes

    Get PDF
    The mathematical formalism for linear quantum field theory on curved spacetime depends in an essential way on the assumption of global hyperbolicity. Physically, what lie at the foundation of any formalism for quantization in curved spacetime are the canonical commutation relations, imposed on the field operators evaluated at a global Cauchy surface. In the algebraic formulation of linear quantum field theory, the canonical commutation relations are restated in terms of a well-defined symplectic structure on the space of smooth solutions, and the local field algebra is constructed as the Weyl algebra associated to this symplectic vector space. When spacetime is not globally hyperbolic, e.g. when it contains naked singularities or closed timelike curves, a global Cauchy surface does not exist, and there is no obvious way to formulate the canonical commutation relations, hence no obvious way to construct the field algebra. In a paper submitted elsewhere, we report on a generalization of the algebraic framework for quantum field theory to arbitrary topological spaces which do not necessarily have a spacetime metric defined on them at the outset. Taking this generalization as a starting point, in this paper we give a prescription for constructing the field algebra of a (massless or massive) Klein-Gordon field on an arbitrary background spacetime. When spacetime is globally hyperbolic, the theory defined by our construction coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4

    The stability of difference schemes of second-order of accuracy for hyperbolic-parabolic equations

    Get PDF
    AbstractA nonlocal boundary value problem for hyperbolic-parabolic equations in a Hilbert space H is considered. Difference schemes of second order of accuracy difference schemes for approximate solution of this problem are presented. Stability estimates for the solution of these difference schemes are established

    A remark on kinks and time machines

    Get PDF
    We describe an elementary proof that a manifold with the topology of the Politzer time machine does not admit a nonsingular, asymptotically flat Lorentz metric.Comment: 4 page

    The Effect of Sources on the Inner Horizon of Black Holes

    Full text link
    Single pulse of null dust and colliding null dusts both transform a regular horizon into a space-like singularity in the space of colliding waves. The local isometry between such space-times and black holes extrapolates these results to the realm of black holes. However, inclusion of particular scalar fields instead of null dusts creates null singularities rather than space-like ones on the inner horizons of black holes.Comment: Final version to appear in PR
    corecore