40 research outputs found

    Characterization and Biocompatibility Study of Nematic and Cholesteryl Liquid Crystals.

    Get PDF
    noIntensive research in bio-engineering has been conducted in the search for flexible biomaterials that could support cell growth and cells attachment. Flexible synthetic materials that support cell growth without the aid of synthetic extracellular matrix proteins are still rare. Cholesteryl liquid crystal containing cholesteryl moieties may have suitable biological affinity. Human keratinocytes (HaCat) were cultured with a nematic liquid crystal and three cholesteryl liquid crystals of different formulation. Subsequently, the trypan blue dye exclusion assay was used to determine cell viability in the liquid crystals. The two classes of liquid crystal were characterized by Differential Scanning Calorimeter (DSC) and polarizing microscope (POM) to understand the nature of the interface material. The cell viability study in medium containing liquid crystals verified that liquid crystals had no effects on cell viability. However, only the surface of cholesteryl liquid crystal has shown affinity to HaCat cells. In addition, cells continued to proliferate in the presence of liquid crystals without a change of medium for eight days. No sign of exothermic and endothermic activities at 370C were observed from the DSC test results for the three samples. Biological and mechanical test result of the cholesteryl liquid crystals has shown that cholesteryl liquid crystals are non toxic and support cell attachment without extracellular matrix protein at very low elasticity

    Fourth-Order Butterworth Active Bandpass Filter Design for Single-Sided Magnetic Particle Imaging Scanner

    Get PDF
    This paper describes the design and simulation of a fourth-order Butterworth active bandpass filter designed for single-sided magnetic particle imaging (MPI) scanner. Bandpass filters (BPF) are used in MPI scanner set-up to attenuate the harmonic distortions generated by the power amplifier before passing the purely sinusoidal signal to the excitation (Drive) coils. The BPF is designed based on the excitation frequency of 22.8 kHz, having Butterworth response, and realized using Sallen-Key topology by cascading one second-order highpass filter and one second-order lowpass filter, with values of the passive components calculated using the coefficient matching method. MATLAB and NI Multisim software are used to simulate the filter, and the results are compared. The magnitude response obtained using MATLAB have monotonic amplitude response in the pass and stopband, and maximally flat with small ripples in the passband than the NI Multisim implementation, while NI Multisimimplementation has better roll-off than MATLAB implementation

    Electrocardiograph (ECG) circuit design and software-based processing using LabVIEW

    Get PDF
    The efficiency and acquisition of a clean (diagnosable) ECG signal dependent upon the proper selection of electronic components and the techniques used for noise elimination. Given that the human body and the lead cables act as antennas, hence picking up noises from the surroundings, thus a major part in the design of an ECG device is to apply various techniques for noise reduction at the early stage of the transmission and processing of the signal. This paper, therefore, covers the design and development of a Single Chanel 3-Lead Electrocardiograph and a Software-based processing environment. Main design characteristics include reduction of common mode voltages, good protection for the patient, use of the ECG device for both monitoring and automatic extraction (measurements) of the ECG components by the software. The hardware consisted of a lead selection stage for the user to select the bipolar lead for recording, a pre-amplification stage for amplifying the differential potentials while rejecting common mode voltages, an electrical isolation stage from three filtering stages with different bandwidths for noise attenuation, a power line interference reduction stage and a final amplification stage. A program in LabVIEW was developed to further improve the quality of the ECG signal, extract all its features and automatically calculate the main ECG output waveforms. The program had two main sections: The filtering section for removing power line interference, wideband noises and baseline wandering, and the analysis section for automatically extracting and measuring all the features of the ECG in real time. A Front Panel Environment was, therefore, developed for the user interface. The present system produced ECG tracings without the influence of noise/artefacts and provided accurate detection and measurement of all the components of the ECG signal

    Effect of TGF-β1 on water retention properties of healthy and osteoarthritic chondrocytes

    Get PDF
    YesArticular cartilage, a connective tissue, contains chondrocytes and glycosaminoglycans (GAGs) which aid in water retention, providing the tissue with its magnificent ability to prevent friction, withstand loads and absorb compressive shocks however, cartilage, does not have the ability to regenerate and repair. Osteoarthritis (OA) is a progressive degenerative disease, which includes reduction of cartilage thickness between two bones in a joint, causing painful bone-to-bone contact. OA affects over 8 million people in the UK alone. , and as the primary causes are unknown, available treatments including surgical and non-surgical techniques which only reduce the symptoms created by the disorder instead of providing a cure. This project focused on utilizing TGF-β1, a cytokine found in elevated amounts in healthy cartilage when compared to degraded cartilage, in order to observe the effects of the growth factor on both healthy and osteoarthritic chondrocytes. The healthy and the osteoarthritic chondrocytes were cultured in two different media (DMEM with and without TGF- β1) before utilizing the SpectraMax M2/M2e plate reader to observe and analyze the effect of TGF-β1 on water retention properties of cells. This has been achieved by quantifying the GAG content using DMMB dye. Results showed that although TGF-β1 did displayed an increase in glycosaminoglycan synthesis, the statistical increase was not vast enough for the alternative hypothesis to be accepted; further experimentation with TGF-β1, alongside other cytokines within the growth factor family is needed to perceive the true influence of the growth factor on un cured degenerative diseases. It was concluded that both the healthy and osteoarthritic cells treated with TGF-β1 absorbed considerably more DMMB in comparison to the cells, suggesting that TGF-β1 indeed works to aid in water retention. TGF-β1 is a key factor to be exploited when constructing treatments for osteoarthriti

    Differences and Similarities between Coronavirus and other Viruses

    Get PDF
    YesCoronavirus is the most dangerous virus in the world wide and it can easy spread between people, animals and plants because it is existing on one strand of RNA (Ribonucleic Acid) and it can duplicate faster than any virus. The source of coronavirus is still unknown, but some sources said that it came from seafood market and other sources said that it came from bat and snakes. It starts in Wuhan; China and every day the fatality increases. The symptoms are like a SARS-CoV (acute respiratory syndrome coronavirus)) and MERS-CoV (Middle East Respiratory Syndrome Coronavirus). By using nucleotide sequence of coronavirus from NCBI (National Center for Biotechnology Information) and some programs that ran on Matlab, the results show that there are some differences and similarities between coronavirus and other viruses such as Ebola, Flu-b, Hepatitis B, HIV and Zika especially for DEBs (distinct excluded blocks) program that shows at 5bp (base pair) there is a common with slightly difference between coronavirus “cgggg” and Ebola virus “cgtgg”. The aim from this study is to find a way to help doctors and scientists to stop spreading the coronavirus or to destroy it
    corecore