139 research outputs found

    Suppression of Charge Equilibration leading to the Synthesis of Exotic Nuclei

    Get PDF
    Charge equilibration between two colliding nuclei can take place in the early stage of heavy-ion collisions. A basic mechanism of charge equilibration is presented in terms of the extension of single-particle motion from one nucleus to the other, from which the upper energy-limit of the bombarding energy is introduced for significant charge equilibration at the early stage of the collision. The formula for this limit is presented, and is compared to various experimental data. It is examined also by comparison to three-dimensional time-dependent density functional calculations. The suppression of charge equilibration, which appears in collisions at the energies beyond the upper energy-limit, gives rise to remarkable effects on the synthesis of exotic nuclei with extreme proton-neutron asymmetry.Comment: 4 pages, 4 figure

    Sleep-Related Falling Out of Bed in Parkinson's Disease

    Get PDF
    Background and purposeSleep-related falling out of bed (SFOB), with its potential for significant injury, has not been a strong focus of investigation in Parkinson's disease (PD) to date. We describe the demographic and clinical characteristics of PD patients with and without SFOB.MethodsWe performed a retrospective analysis of 50 consecutive PD patients, who completed an REM sleep behavior disorder screening questionnaire (RBDSQ), questionnaires to assess for RBD clinical mimickers and questions about SFOB and resulting injuries. Determination of high risk for RBD was based on an RBDSQ score of 5 or greater.ResultsThirteen patients reported history of SFOB (26%). Visual hallucinations, sleep-related injury, quetiapine and amantadine use were more common in those patients reporting SFOB. Twenty-two patients (44%) fulfilled criteria for high risk for RBD, 12 of which (55%) reported SFOB. Five patients reported injuries related to SFOB. SFOB patients had higher RBDSQ scores than non-SFOB patients (8.2±3.0 vs. 3.3±2.0, p<0.01). For every one unit increase in RBDSQ score, the likelihood of SFOB increased two-fold (OR 2.4, 95% CI 1.3-4.2, p<0.003).ConclusionsSFOB may be a clinical marker of RBD in PD and should prompt confirmatory polysomnography and pharmacologic treatment to avoid imminent injury. Larger prospective studies are needed to identify risk factors for initial and recurrent SFOB in PD

    Oxidative stress causes ERK phosphorylation and cell death in cultured retinal pigment epithelium: Prevention of cell death by AG126 and 15-deoxy-delta 12, 14-PGJ(2)

    Get PDF
    BACKGROUND: The retina, which is exposed to both sunlight and very high levels of oxygen, is exceptionally rich in polyunsaturated fatty acids, which makes it a favorable environment for the generation of reactive oxygen species. The cytotoxic effects of hydrogen peroxide (H(2)O(2)) induced oxidative stress on retinal pigment epithelium were characterized in this study. METHODS: The MTT cell viability assay, Texas-Red phalloidin staining, immunohistochemistry and Western blot analysis were used to assess the effects of oxidative stress on primary human retinal pigment epithelial cell cultures and the ARPE-19 cell line. RESULTS: The treatment of retinal pigment epithelial cells with H(2)O(2 )caused a dose-dependent decrease of cellular viability, which was preceded by a significant cytoskeletal rearrangement, activation of the Extracellular signal-Regulated Kinase, lipid peroxidation and nuclear condensation. This cell death was prevented partially by the prostaglandin derivative, 15d-PGJ(2 )and by the protein kinase inhibitor, AG126. CONCLUSION: 15d-PGJ(2 )and AG126 may be useful pharmacological tools in the future capable of preventing oxidative stress induced RPE cell death in human ocular diseases

    Low Enzymatic Activity Haplotypes of the Human Catechol-O-Methyltransferase Gene: Enrichment for Marker SNPs

    Get PDF
    Catechol-O-methyltransferase (COMT) is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous (val158met) position, designated as low (LPS), average (APS), and high pain sensitive (HPS), are associated with experimental pain sensitivity and risk of developing chronic musculoskeletal pain conditions. APS and HPS haplotypes produce significant functional effects, coding for 3- and 20-fold reductions in COMT enzymatic activity, respectively. In the present study, we investigated whether additional minor single nucleotide polymorphisms (SNPs), accruing in 1 to 5% of the population, situated in the COMT transcript region contribute to haplotype-dependent enzymatic activity. Computer analysis of COMT ESTs showed that one synonymous minor SNP (rs769224) is linked to the APS haplotype and three minor SNPs (two synonymous: rs6267, rs740602 and one nonsynonymous: rs8192488) are linked to the HPS haplotype. Results from in silico and in vitro experiments revealed that inclusion of allelic variants of these minor SNPs in APS or HPS haplotypes did not modify COMT function at the level of mRNA folding, RNA transcription, protein translation, or enzymatic activity. These data suggest that neutral variants are carried with APS and HPS haplotypes, while the high activity LPS haplotype displays less linked variation. Thus, both minor synonymous and nonsynonymous SNPs in the coding region are markers of functional APS and HPS haplotypes rather than independent contributors to COMT activity

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Modulating mitophagy in mitochondrial disease

    Get PDF
    Mitochondrial diseases may result from mutations in the maternally-inherited mitochondrial DNA (mtDNA) or from mutations in nuclear genes encoding mitochondrial proteins. Their bi-genomic nature makes mitochondrial diseases a very heterogeneous group of disorders that can present at any age and can affect any type of tissue. The autophagic-lysosomal degradation pathway plays an important role in clearing dysfunctional and redundant mitochondria through a specific quality control mechanism termed mitophagy. Mitochondria could be targeted for autophagic degradation for a variety of reasons including basal turnover for recycling, starvation induced degradation, and degradation due to damage. While the core autophagic machinery is highly conserved and common to most pathways, the signaling pathways leading to the selective degradation of damaged mitochondria are still not completely understood. Type 1 mitophagy due to nutrient starvation is dependent on PI3K (phosphoinositide 3-kinase) for autophagosome formation but independent of mitophagy proteins, PINK1 (PTEN-induced putative kinase 1) and Parkin. Whereas type 2 mitophagy that occurs due to damage is dependent on PINK1 and Parkin but does not require PI3K. Autophagy and mitophagy play an important role in human disease and hence could serve as therapeutic targets for the treatment of mitochondrial as well as neurodegenerative disorders. Therefore, we reviewed drugs that are known modulators of autophagy (AICAR and metformin) and may effect this by activating the AMP-activated protein kinase signaling pathways. Furthermore, we reviewed data available on supplements, such as Coenzyme Q and the quinone idebenone, that we assert rescue increased mitophagy in mitochondrial disease by benefiting mitochondrial function

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF

    Enhanced spin-current tensor contribution in collision dynamics

    No full text
    The tensor and spin-orbit forces contribute essentially to the formation of the spin mean field, and give rise to the same dynamical effect, namely spin polarization. In this paper, based on time-dependent density functional calculations, we show that the tensor force, which usually acts like a small correction to the spin-orbit force, becomes more important in heavy-ion reactions and the effect increases with the mass of the system.Comment: Phys. Rev. C in press; the title is changed to "Enhanced spin-current tensor contribution in collision dynamics
    corecore