94,344 research outputs found
Quantum mechanical photon-count formula derived by entangled state representation
By introducing the thermo entangled state representation, we derived four new
photocount distribution formulas for a given density operator of light field.
It is shown that these new formulas, which is convenient to calculate the
photocount, can be expressed as such integrations over Laguree-Gaussian
function with characteristic function, Wigner function, Q-function, and
P-function, respectively.Comment: 5 pages, no figur
Comment on "Single-mode excited entangled coherent states"
In Xu and Kuang (\textit{J. Phys. A: Math. Gen.} 39 (2006) L191), the authors
claim that, for single-mode excited entangled coherent states , \textquotedblleft the photon excitations lead to the
decrease of the concurrence in the strong field regime of and
the concurrence tends to zero when ". This is wrong.Comment: 4 apges, 2 figures, submitted to JPA 15 April 200
Tipstreaming of a drop in simple shear flow in the presence of surfactant
We have developed a multi-phase SPH method to simulate arbitrary interfaces
containing surface active agents (surfactants) that locally change the
properties of the interface, such the surface tension coefficient. Our method
incorporates the effects of surface diffusion, transport of surfactant from/to
the bulk phase to/from the interface and diffusion in the bulk phase.
Neglecting transport mechanisms, we use this method to study the impact of
insoluble surfactants on drop deformation and breakup in simple shear flow and
present the results in a fluid dynamics video.Comment: Two videos are included for the Gallery of Fluid Motion of the APS
DFD Meeting 201
Generating entanglement with low Q-factor microcavities
We propose a method of generating entanglement using single photons and
electron spins in the regime of resonance scattering. The technique involves
matching the spontaneous emission rate of the spin dipole transition in bulk
dielectric to the modified rate of spontaneous emission of the dipole coupled
to the fundamental mode of an optical microcavity. We call this regime
resonance scattering where interference between the input photons and those
scattered by the resonantly coupled dipole transition result in a reflectivity
of zero. The contrast between this and the unit reflectivity when the cavity is
empty allow us to perform a non demolition measurement of the spin and to non
deterministically generate entanglement between photons and spins. The chief
advantage of working in the regime of resonance scattering is that the required
cavity quality factors are orders of magnitude lower than is required for
strong coupling, or Purcell enhancement. This makes engineering a suitable
cavity much easier particularly in materials such as diamond where etching high
quality factor cavities remains a significant challenge
Motor current signal analysis using a modified bispectrum for machine fault diagnosis
This paper presents the use of the induction motor current to identify and quantify common faults within a two-stage reciprocating compressor. The theoretical basis is studied to understand current signal characteristics when the motor undertakes a varying load under faulty conditions. Although conventional bispectrum representation of current signal allows the inclusion of phase information and the elimination of Gaussian noise, it produces unstable results due to random phase variation of the sideband components in the current signal. A modified bispectrum based on the amplitude modulation feature of the current signal is thus proposed to combine both lower sidebands and higher sidebands simultaneously and hence describe the current signal more accurately. Based on this new bispectrum a more effective diagnostic feature namely normalised bispectral peak is developed for fault classification. In association with the kurtosis of the raw current signal, the bispectrum feature gives rise to reliable fault classification results. In particular, the low feature values can differentiate the belt looseness from other fault cases and discharge valve leakage and intercooler leakage can be separated easily using two linear classifiers. This work provides a novel approach to the analysis of stator current for the diagnosis of motor drive faults from downstream driving equipment
Performance analysis of contention based bandwidth request mechanisms in WiMAX networks
This article is posted here with the permission of IEEE. The official version can be obtained from the DOI below - Copyright @ 2010 IEEEWiMAX networks have received wide attention as they support high data rate access and amazing ubiquitous connectivity with great quality-of-service (QoS) capabilities. In order to support QoS, bandwidth request (BW-REQ) mechanisms are suggested in the WiMAX standard for resource reservation, in which subscriber stations send BW-REQs to a base station which can grant or reject the requests according to the available radio resources. In this paper we propose a new analytical model for the performance analysis of various contention based bandwidth request mechanisms, including grouping and no-grouping schemes, as suggested in the WiMAX standard. Our analytical model covers both unsaturated and saturated traffic load conditions in both error-free and error-prone wireless channels. The accuracy of this model is verified by various simulation results. Our results show that the grouping mechanism outperforms the no-grouping mechanism when the system load is high, but it is not preferable when the system load is light. The channel noise degrades the performance of both throughput and delay.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/G070350/1 and
by the Brunel University’s BRIEF Award
- …