32 research outputs found

    The impact of diabetes on the pathogenesis of sepsis

    Get PDF
    Diabetes is associated with an increased susceptibility to infection and sepsis. Conflicting data exist on whether the mortality of patients with sepsis is influenced by the presence of diabetes, fuelling the ongoing debate on the benefit of tight glucose regulation in patients with sepsis. The main reason for which diabetes predisposes to infection appears to be abnormalities of the host response, particularly in neutrophil chemotaxis, adhesion and intracellular killing, defects that have been attributed to the effect of hyperglycaemia. There is also evidence for defects in humoral immunity, and this may play a larger role than previously recognised. We review the literature on the immune response in diabetes and its potential contribution to the pathogenesis of sepsis. In addition, the effect of diabetes treatment on the immune response is discussed, with specific reference to insulin, metformin, sulphonylureas and thiazolidinediones

    Use of Biomarkers in the Evaluation and Treatment of Hypertensive Patients

    Get PDF
    The current definition of hypertension is based on blood pressure values, and blood pressure also drives treatment decisions, is the most important treatment monitoring tool and helps estimating risk of hypertension related organ damage. In an era of precision medicine additional biomarkers are needed in the diagnosis and management of patients with hypertension. In this review we outline the areas in which functional, imaging and circulating biomarkers could help in a more individualised definition of hypertension and associated risk. We will cover biomarkers for diagnosis; of pathophysiology and prediction of hypertension; response to treatment, organ damage; and to monitor treatment. A clear focus is on the vasculature, the heart and the kidneys, whereas we see a need to further develop biomarkers of cerebral function in order to diagnose cognition deficits and monitor changes in cognition in the future to support addressing the growing burden of hypertension associated vascular dementia

    Whole-body vibration training reduces arterial stiffness, blood pressure and sympathovagal balance in young overweight/obese women

    No full text
    Obesity is associated with early cardiovascular dysfunction and reduced muscle strength. Whole-body vibration (WBV) training may improve arterial function and muscle strength. The effects of WBV training on arterial stiffness (brachial-ankle pulse wave velocity, baPWV), wave reflection (augmentation index, AIx), brachial systolic blood pressure (bSBP), aortic systolic blood pressure (aSBP), heart rate variability, and muscle strength (one-repetition maximum, 1RM) were examined in 10 young (21±2 year) overweight/obese women (body mass index, BMI=29.9±0.8 kg m–2). Participants were randomized to a 6-week WBV training or non-exercising control (CON) period in a crossover design. WBV training (3 days × week) consisted of static and dynamic squats and calf raises with vibration intensity at 25–30 Hz and 1–2 mm amplitude (2.83–4.86 G). There were significant (P\u3c0.05) decreases in baPWV (−0.9±0.3 m s–1), AIx (−8.0±2.2 %), bSBP (−5.3±1.5 mm Hg), aSBP (−5.2±2.1 mm Hg), low-frequency power (−0.13±0.05 nu) and sympathovagal balance (LF/HF, −0.42±0.16) after WBV training compared with CON. Significant (P\u3c0.05) increases in high-frequency power (HF, 0.19±0.04 nu) and leg extension 1RM (8.2±2.3 kg) occurred after WBV training compared with CON. Six weeks of WBV training decreased systemic arterial stiffness and aSBP via improvements in wave reflection and sympathovagal balance in young overweight/obese normotensive women. WBV training may benefit arterial function and muscle strength in deconditioned individuals who cannot perform conventional exercise
    corecore