711 research outputs found
Strain-induced shift in the elastically soft direction of epitaxially grown fcc metals
The theory of epitaxial strain energy is extended beyond the harmonic
approximation to account for large film/substrate lattice mismatch. We find
that for fcc noble metals (i) directions and soften under tensile
biaxial strain (unlike zincblende semiconductors) while (ii) and
soften under compressive biaxial strain. Consequently, (iii) upon sufficient
compression becomes the softest direction (lowest elastic energy), but
(iv) is the hardest direction for large tensile strain. (v) The dramatic
softening of in fcc noble metals upon biaxial tensile strain is caused by
small fcc/bcc energy differences for these materials. These results can be used
in selecting the substrate orientation for effective epitaxial growth of pure
elements and A/sub p/B/sub q/ superlattices, as well as to explain the shapes
of coherent precipitates in phase separating alloys.Comment: 3 pages, ReVTeX galley format, 3 EPS figures embedded using epsf,
submitted to Applied Physics Letter
Method for locating low-energy solutions within DFT+U
The widely employed DFT+U formalism is known to give rise to many self-consistent yet energetically distinct solutions in correlated systems, which can be highly problematic for reliably predicting the thermodynamic and physical properties of such materials. Here we study this phenomenon in the bulk materials UO_2, CoO, and NiO, and in a CeO_2 surface. We show that the following factors affect which self-consistent solution a DFT+U calculation reaches: (i) the magnitude of U; (ii) initial correlated orbital occupations; (iii) lattice geometry; (iv) whether lattice symmetry is enforced on the charge density; and (v) even electronic mixing parameters. These various solutions may differ in total energy by hundreds of meV per atom, so identifying or approximating the ground state is critical in the DFT+U scheme. We propose an efficient U-ramping method for locating low-energy solutions, which we validate in a range of test cases. We also suggest that this method may be applicable to hybrid functional calculations
Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions
A fingerprint based metric for measuring similarities of crystalline structures
Measuring similarities/dissimilarities between atomic structures is important
for the exploration of potential energy landscapes. However, the cell vectors
together with the coordinates of the atoms, which are generally used to
describe periodic systems, are quantities not suitable as fingerprints to
distinguish structures. Based on a characterization of the local environment of
all atoms in a cell we introduce crystal fingerprints that can be calculated
easily and allow to define configurational distances between crystalline
structures that satisfy the mathematical properties of a metric. This distance
between two configurations is a measure of their similarity/dissimilarity and
it allows in particular to distinguish structures. The new method is an useful
tool within various energy landscape exploration schemes, such as minima
hopping, random search, swarm intelligence algorithms and high-throughput
screenings
Recommended from our members
First-principles calculations and experimental studies of: XYZ 2 thermoelectric compounds: Detailed analysis of van der Waals interactions
First-principles calculations can accelerate the search for novel high-performance thermoelectric materials. However, the prediction of the thermoelectric properties is strongly dependent on the approximations used for the calculations. Here, thermoelectric properties were calculated with different computational approximations (i.e., PBE-GGA, HSE06, spin-orbit coupling and DFT-D3) for three layered XYZ2 compounds (TmAgTe2, YAgTe2, and YCuTe2). In addition to the computations, the structural, electrical and thermal properties of these compounds were measured experimentally and compared to the computations. An enhanced prediction of the crystal structure and heat capacity was achieved with the inclusion of van der Waals interactions due to more accurate modeling of the interatomic forces. In particular, a large shift of the acoustic phonons and low-frequency optical phonons to lower frequencies was observed from the dispersion-optimized structure. From the phonon dispersion curves of these compounds, the ultralow thermal conductivity in the investigated XYZ2 compounds could be described by a recent developed minimum thermal conductivity model. For the prediction of the electrical conductivity, a temperature-dependent relaxation time was used, and it was limited by acoustic phonons. While HSE06 has only a small influence on the electrical properties due to a computed band gap energy of >0.25 eV, the inclusion of both van der Waals interactions and spin-orbit coupling leads to a more accurate band structure, resulting in better prediction of electrical properties. Furthermore, the experimental thermoelectric properties of YAgTe2, TmAg0.95Zn0.05Te2 and TmAg0.95Mg0.05Te2 were measured, showing an increase in zT of TmAg0.95Zn0.05Te2 by more than 35% (zT = 0.47 ± 0.12) compared to TmAgTe2
Advanced transport operating system software upgrade: Flight management/flight controls software description
The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU)
Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic
Monte Carlo (MC) simulations of lattice models are a widely used way to
compute thermodynamic properties of substitutional alloys. A limitation to
their more widespread use is the difficulty of driving a MC simulation in order
to obtain the desired quantities. To address this problem, we have devised a
variety of high-level algorithms that serve as an interface between the user
and a traditional MC code. The user specifies the goals sought in a high-level
form that our algorithms convert into elementary tasks to be performed by a
standard MC code. For instance, our algorithms permit the determination of the
free energy of an alloy phase over its entire region of stability within a
specified accuracy, without requiring any user intervention during the
calculations. Our algorithms also enable the direct determination of
composition-temperature phase boundaries without requiring the calculation of
the whole free energy surface of the alloy system
Giant onsite electronic entropy enhances the performance of ceria for water splitting
AbstractPrevious studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 kB per oxygen vacancy for Ce4+/Ce3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.</jats:p
Search for a Solution of the Pioneer Anomaly
In 1972 and 1973 the Pioneer 10 and 11 missions were launched. They were the
first to explore the outer solar system and achieved stunning breakthroughs in
deep-space exploration. But beginning in about 1980 an unmodeled force of \sim
8 \times 10^{-8} cm/s^2, directed approximately towards the Sun, appeared in
the tracking data. It later was unambiguously verified as being in the data and
not an artifact. The cause remains unknown (although radiant heat remains a
likely origin). With time more and more effort has gone into understanding this
anomaly (and also possibly related effects). We review the situation and
describe ongoing programs to resolve the issue.Comment: 24 pages 8 figure
Reliable First-Principles Alloy Thermodynamics via Truncated Cluster Expansions
In alloys cluster expansions (CE) are increasingly used to combine
first-principles electronic-structure and Monte Carlo methods to predict
thermodynamic properties. As a basis-set expansion in terms of lattice
geometrical clusters and effective cluster interactions, the CE is exact if
infinite, but is tractable only if truncated. Yet until now a truncation
procedure was not well-defined and did not guarantee a reliable truncated CE.
We present an optimal truncation procedure for CE basis sets that provides
reliable thermodynamics. We then exemplify its importance in NiV, where the
CE has failed unpredictably, and now show agreement to a range of measured
values, predict new low-energy structures, and explain the cause of previous
failures.Comment: 4 pages, 2 figure
- …
