813 research outputs found

    Letter from McHenry County Sheriff regarding Treatment of Prisoners by the Minot Police Department, July 1918

    Get PDF
    Letter from McHenry County Sheriff J.A. Wik to Attorney General Langer regarding the treatment of prisoners in Minot, North Dakota, dated July 18, 1918. Wik writes that he has interviewed the prisoners about their treatment at the hands of the Minot Police Department but none of the prisoners cooperated.https://commons.und.edu/langer-papers/1294/thumbnail.jp

    Liftable vector fields over corank one multigerms

    Full text link
    In this paper, a systematic method is given to construct all liftable vector fields over an analytic multigerm f:(Kn,S)(Kp,0)f: (\mathbb{K}^n, S)\to (\mathbb{K}^p,0) of corank at most one admitting a one-parameter stable unfolding.Comment: 34 pages. In ver. 2, several careless mistakes for calculations in Section 6 were correcte

    XMM-Newton Observation of the Northwest Radio Relic Region in Abell 3667

    Full text link
    Abell 3667 is the archetype of a merging cluster with radio relics. The NW radio relic is the brightest cluster relic or halo known, and is believed to be due to a strong merger shock. We have observed the NW relic for 40 ksec of net XMM time. We observe a global decline of temperature across the relic from 6 to 1 keV, similar to the Suzaku results. Our new observations reveal a sharp change of both temperature and surface brightness near the position of the relic. The increased X-ray emission on the relic can be equivalently well described by either a thermal or nonthermal spectral model. The parameters of the thermal model are consistent with a Mach number M~2 shock and a shock speed of ~1200 km s^-1. The energy content of the relativistic particles in the radio relic can be explained if they are (re)-accelerated by the shock with an efficiency of ~0.2%. Comparing the limit on the inverse Compton X-ray emission with the measured radio synchrotron emission, we set a lower limit to the magnetic field in the relic of 3 muG. If the emission from the relic is non-thermal, this lower limit is in fact the required magnetic field.Comment: 11 pages, ApJ in pres

    On the absence of radio halos in clusters with double relics

    Get PDF
    Pairs of radio relics are believed to form during cluster mergers, and are best observed when the merger occurs in the plane of the sky. Mergers can also produce radio halos, through complex processes likely linked to turbulent re-acceleration of cosmic-ray electrons. However, only some clusters with double relics also show a radio halo. Here, we present a novel method to derive upper limits on the radio halo emission, and analyse archival X-ray Chandra data, as well as galaxy velocity dispersions and lensing data, in order to understand the key parameter that switches on radio halo emission. We place upper limits on the halo power below the P1.4GHzM500P_{\rm 1.4 \, GHz}\, M_{500} correlation for some clusters, confirming that clusters with double relics have different radio properties. Computing X-ray morphological indicators, we find that clusters with double relics are associated with the most disturbed clusters. We also investigate the role of different mass-ratios and time-since-merger. Data do not indicate that the merger mass ratio has an impact on the presence or absence of radio halos (the null hypothesis that the clusters belong to the same group cannot be rejected). However, the data suggests that the absence of radio halos could be associated with early and late mergers, but the sample is too small to perform a statistical test. Our study is limited by the small number of clusters with double relics. Future surveys with LOFAR, ASKAP, MeerKat and SKA will provide larger samples to better address this issue.Comment: 12 pages, 7 figures, MNRAS accepte

    Supermodel Analysis of the Hard X-Ray Excess in the Coma Cluster

    Get PDF
    The Supermodel provides an accurate description of the thermal contribution by the hot intracluster plasma which is crucial for the analysis of the hard excess. In this paper the thermal emissivity in the Coma cluster is derived starting from the intracluster gas temperature and density profiles obtained by the Supermodel analysis of X-ray observables: the XMM-Newton temperature profile and the Rosat brightness distribution. The Supermodel analysis of the BeppoSAX/PDS hard X-ray spectrum confirms our previous results, namely an excess at the c.l. of ~4.8sigma and a nonthermal flux of 1.30+-0.40x 10^-11 erg cm^-2 s^-1 in the energy range 20-80 keV. A recent joint XMM-Newton/Suzaku analysis reports an upper limit of ~6x10^-12 erg cm^-2 s^-1 in the energy range 20-80 keV for the nonthermal flux with an average gas temperature of 8.45+-0.06 keV, and an excess of nonthermal radiation at a confidence level above 4sigma, without including systematic effects, for an average XMM-Newton temperature of 8.2 keV in the Suzaku/HXD-PIN FOV, in agreement with our earlier PDS analysis. Here we present a further evidence of the compatibility between the Suzaku and BeppoSAX spectra, obtained by our Supermodel analysis of the PDS data, when the smaller size of the HXD-PIN FOV and the two different average temperatures derived by XMM-Newton and by the joint XMM-Newton/Suzaku analysis are taken into account. The consistency of the PDS and HXD-PIN spectra reaffirms the presence of a nonthermal component in the hard X-ray spectrum of the Coma cluster. The Supermodel analysis of the PDS data reports an excess at c.l. above 4sigma also for the higher average temperature of 8.45 keV thanks to the PDS FOV considerably greater than the HXD-PIN FOV.Comment: 18 pages, 7 figures, accepted for publication in Ap

    Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster

    Get PDF
    Line emission from dark matter is well motivated for some candidates e.g. sterile neutrinos. We present the first search for dark matter line emission in the 3-80keV range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at 3.5keV, but improves on the constraints for energies of 10-25keV.Comment: 7 pages, 5 figures, submitted to Ap
    corecore