911 research outputs found
Bean common mosaic virus and related viruses in Africa
This bulletin reviews the current status of research knowledge on bean common mosaic potyvirus (BCMV) and reports the results of a survey of the occurrence of BCMV in the main bean-growing areas of Africa. The strain of each BCMV isolate collected has been identified by its reactions on a standard set of differential bean cultivars and distribution maps of strain occurrence have been prepared for each country surveyed. BCMV isolates were collected from Phaseolus vulgaris bean crops and from wild species of legumes and other non-Phaseolus legume crops
Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity
International audienceSilica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: 1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol (PEG) molecules, 2) positively charged silica nanoparticles coated with amine groups and 3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 hours with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production and oxidative stress. Results showed that the highly positive charged nanoparticle, were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticles types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity
In situ measurement of bovine serum albumin interaction with gold nanospheres
Here we present in situ observations of adsorption of bovine serum albumin (BSA) on citratestabilized
gold nanospheres. We implemented scattering correlation spectroscopy as a tool to
quantify changes in the nanoparticle Brownian motion resulting from BSA adsorption onto the
nanoparticle surface. Protein binding was observed as an increase in the nanoparticle
hydrodynamic radius. Our results indicate the formation of a protein monolayer at similar albumin
concentrations as those found in human blood. Additionally, by monitoring the frequency and
intensity of individual scattering events caused by single gold nanoparticles passing the
observation volume, we found that BSA did not induce colloidal aggregation, a relevant result
from the toxicological viewpoint. Moreover, to elucidate the thermodynamics of the gold
nanoparticle-BSA association, we measured an adsorption isotherm which was best described by
an anti-cooperative binding model. The number of binding sites based on this model was
consistent with a BSA monolayer in its native state. In contrast, experiments using poly-ethylene
glycol capped gold nanoparticles revealed no evidence for adsorption of BSA
The extent of diabetes misclassification one year after a diagnosis of Type 1 diabetes: data from the after diabetes diagnosis research support system (ADDRESS-2) cohort
Modular assembly of proteins on nanoparticles
Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold–sulfur bonds (Au–S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond
IgG and fibrinogen driven nanoparticle aggregation
A thorough understanding of how proteins induce nanoparticle (NP) aggregation is crucial when designing in vitro and in vivo assays and interpreting experimental results. This knowledge is also crucial when developing nano-applications and formulation for drug delivery systems. In this study, we found that extraction of immunoglobulin G (IgG) from cow serum results in lower polystyrene NPs aggregation. Moreover, addition of isolated IgG or fibrinogen to fetal cow serum enhanced this aggregation, thus demonstrating that these factors are major drivers of NP aggregation in serum. Counter-intuitively, NP aggregation was inversely dependent on protein concentration; i.e., low protein concentrations induced large aggregates, whereas high protein concentrations induced small aggregates. Protein-induced NP aggregation and aggregate size were monitored by absorbance at 400 nm and dynamic light scattering, respectively. Here, we propose a mechanism behind the protein concentration dependent aggregation; this mechanism involves the effects of multiple protein interactions on the NP surface, surface area limitations, aggregation kinetics, and the influence of other serum proteins.We thank Professor Sara Linse for scientific discussions and advice and Professor Patrik Brundin for enabling access to the light microscope. The project received financial support from Nanometer structure consortium at Lund University (nmC@LU), Lars Hierta Foundation, and the research school FLAK of Lund University
Cloaking nanoparticles with protein corona shield for targeted drug delivery
Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems
Universal surface-enhanced Raman tags : individual nanorods for measurements from the visible to the infrared (514 – 1064 nm)
Surface-enhanced Raman scattering (SERS) is a promising imaging modality for use in a variety of multiplexed tracking and sensing applications in biological environments. However, the uniform production of SERS nanoparticle tags with high yield and brightness still remains a significant challenge. Here, we describe an approach based on the controlled co-adsorption of multiple dye species onto gold nanorods to create tags that can be detected across a much wider range of excitation wavelengths (514 – 1064 nm) compared to conventional approaches that typically focus on a single wavelength. This was achieved without the added complexity of nanoparticle aggregation or growing surrounding metallic shells to further enhance the surface-enhanced resonance Raman scattering (SERRS) signal. Correlated Raman and scanning electron microscopy mapping measurements of individual tags were used to clearly demonstrate that strong and reproducible SERRS signals at high particle yields (>92 %) were readily achievable. The polyelectrolyte-wrapped nanorod-dye conjugates were also found to be highly stable as well as non-cytotoxic. To demonstrate the use of these universal tags for the multimodal optical imaging of biological specimens, confocal Raman and fluorescence maps of stained immune cells following nanoparticle uptake were acquired at several excitation wavelengths and compared with dark-field images. The ability to colocalize and track individual optically encoded nanoparticles across a wide range of wavelengths simultaneously will enable the use of SERS alongside other imaging techniques for the real-time monitoring of cell-nanoparticle interactions
Rationale and protocol for the After Diabetes Diagnosis REsearch Support System (ADDRESS): an incident and high risk type 1 diabetes UK cohort study
INTRODUCTION: Type 1 diabetes is heterogeneous in its presentation and progression. Variations in clinical presentation between children and adults, and with ethnic group warrant further study in the UK to improve understanding of this heterogeneity. Early interventions to limit beta cell damage in type 1 diabetes are undergoing evaluation, but recruitment is challenging. The protocol presented describes recruitment of people with clinician-assigned, new-onset type 1 diabetes to understand the variation in their manner of clinical presentation, to facilitate recruitment into intervention studies and to create an open-access resource of data and biological samples for future type 1 diabetes research. METHODS AND ANALYSIS: Using the National Institute for Health Research Clinical Research Network, patients >5 years of age diagnosed clinically with type 1 diabetes (and their siblings) are recruited within 6 months of diagnosis. Participants agree to have their clinical, laboratory and demographic data stored on a secure database, for their clinical progress to be monitored using information held by NHS Digital, and to be contacted about additional research, in particular immunotherapy and other interventions. An optional blood sample is taken for islet autoantibody measurement and storage of blood and DNA for future analyses. Data will be analysed statistically to describe the presentation of incident type 1 diabetes in a contemporary UK population. ETHICS AND DISSEMINATION: Ethical approval was obtained from the independent NHS Research Ethics Service. Results will be presented at national and international meetings and submitted for publication to peer-reviewed journals.This work was supported by Diabetes UK grant number 09/0003919 and the Juvenile Diabetes Research Foundation grant number 9-2010-407. Recruitment is supported by staff at the National Institute for Health Research Clinical Research Network
Clinical presentation and islet autoantibody status in a UK multi-ethnic cohort of children and adults with new-onset Type 1 diabetes-the after diabetes diagnosis research support system-2 (ADDRESS-2)
- …
