551 research outputs found

    Effect of stress concentrations in composite structures

    Get PDF
    Composite structures have found wide use in many engineering fields and a sound understanding of their response under load is important to their utilization. An experimental program is being carried out to gain a fundamental understanding of the failure mechanics of multilayered composite structures at GALCIT. As a part of this continuing study, the performance of laminated composite plates in the presence of a stress gradient and the failure of composite structures at points of thickness discontinuity is assessed. In particular, the questions of initiation of failure and its subsequent growth to complete failure of the structure are addressed

    A Mechanical Model for Elastic Fiber Microbuckling

    Get PDF
    A two-dimensional mechanical model is presented to predict the compressive strength of unidirectional fiber composites using technical beam theory and classical elasticity. First, a single fiber resting on a matrix half-plane is considered. Next, a more elaborate analysis of a uniformly laminated, unidirectional fiber composite half-plane is presented. The model configuration incorporates a free edge which introduces a buckling mode that originates at the free edge and decays into the interior of the half-plane. It is demonstrated that for composites of low volume fraction (<0.3), this decay mode furnishes values of buckling strain that are below the values predicted by the Rosen (1965) model. At a higher volume fraction the buckling mode corresponds to a half wavelength that is in violation of the usual assumptions of beam theory. Causes for deviations of the model prediction from existing experimental results are discussed

    Narrow deeply bound KK^- atomic states

    Get PDF
    Using optical potentials fitted to a comprehensive set of strong interaction level shifts and widths in KK^- atoms, we predict that the KK^- atomic levels which are inaccessible in the atomic cascade process are generally narrow, spanning a range of widths about 50 - 1500 keV over the entire periodic table. The mechanism for this narrowing is different from the mechanism for narrowing of pionic atom levels. Examples of such `deeply bound' KK^- atomic states are given, showing that in many cases these states should be reasonably well resolved. Several reactions which could be used to form these `deeply bound' states are mentioned. Narrow deeply bound states are expected also in pˉ\bar{p} atoms.Comment: Revised, Phys. Lett B. in pres

    T650/AFR-PE-4/FM680-1 Mode I Critical Energy Release Rate at High Temperatures: Experiments and Numerical Models

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76240/1/AIAA-2007-2305-492.pd

    On the determination of the pion effective mass in nuclei from pionic atoms

    Full text link
    The binding energies of the deeply bound 1s and 2p states in pionic atoms of 207^{207}Pb, recently established experimentally in the 208^{208}Pb(d,3^3He) reaction, have been used by several groups to derive the pion effective mass in nuclear matter. We show that these binding energies are fully consistent with `normal' pionic atoms and that the real part of the pion-nucleus potential at the center of 207^{207}Pb is 28±\pm3 MeV and not 20 MeV as suggested previously.Comment: 8 pages, Revtex, 2 figures, accepted by Physics Letters

    Efficient and Robust Traction Laws for the Modeling of Adhesively Bonded Joints

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76317/1/AIAA-2008-1847-586.pd

    Predictions of Delamination of a Stiffened Panel Using a Cohesive Zone Model

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83573/1/AIAA-2010-2617-230.pd

    Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling

    Full text link
    Recent theoretical studies of topologically nontrivial electronic states in Kondo insulators have pointed to the importance of spin-orbit coupling (SOC) for stabilizing these states. However, systematic experimental studies that tune the SOC parameter λSOC\lambda_{\rm{SOC}} in Kondo insulators remain elusive. The main reason is that variations of (chemical) pressure or doping strongly influence the Kondo coupling JKJ_{\text{K}} and the chemical potential μ\mu -- both essential parameters determining the ground state of the material -- and thus possible λSOC\lambda_{\rm{SOC}} tuning effects have remained unnoticed. Here we present the successful growth of the substitution series Ce3_3Bi4_4(Pt1x_{1-x}Pdx_x)3_3 (0x10 \le x \le 1) of the archetypal (noncentrosymmetric) Kondo insulator Ce3_3Bi4_4Pt3_3. The Pt-Pd substitution is isostructural, isoelectronic, and isosize, and therefore likely to leave JKJ_{\text{K}} and μ\mu essentially unchanged. By contrast, the large mass difference between the 5d5d element Pt and the 4d4d element Pd leads to a large difference in λSOC\lambda_{\rm{SOC}}, which thus is the dominating tuning parameter in the series. Surprisingly, with increasing xx (decreasing λSOC\lambda_{\rm{SOC}}), we observe a Kondo insulator to semimetal transition, demonstrating an unprecedented drastic influence of the SOC. The fully substituted end compound Ce3_3Bi4_4Pd3_3 shows thermodynamic signatures of a recently predicted Weyl-Kondo semimetal.Comment: 6 pages, 5 figures plus Supplemental Materia

    Recent progress on the chiral unitary approach to meson meson and meson baryon interactions

    Get PDF
    We report on recent progress on the chiral unitary approach, analogous to the effective range expansion in Quantum Mechanics, which is shown to have a much larger convergence radius than ordinary chiral perturbation theory, allowing one to reproduce data for meson meson interaction up to 1.2 GeV. Applications to physical processes so far unsuited for a standard chiral perturbative approach are presented. Results for the extension of these ideas to the meson baryon sector are discussed, together with applications to kaons in a nuclear medium and KK^- atoms.Comment: Contribution to the KEK Tanashi Symposium on Physics of Hadrons and Nuclei, Tokyo, December 1998, 10 pages, 3 postscript figures. To be published as a special issue of Nuclear Physics
    corecore