1,716 research outputs found
Intrinsic Mean Square Displacements in Proteins
The thermal mean square displacement (MSD) of hydrogen in proteins and its
associated hydration water is measured by neutron scattering experiments and
used an indicator of protein function. The observed MSD as currently determined
depends on the energy resolution width of the neutron scattering instrument
employed. We propose a method for obtaining the intrinsic MSD of H in the
proteins, one that is independent of the instrument resolution width. The
intrinsic MSD is defined as the infinite time value of that appears in
the Debye-Waller factor. The method consists of fitting a model to the
resolution broadened elastic incoherent structure factor or to the resolution
dependent MSD. The model contains the intrinsic MSD, the instrument resolution
width and a rate constant characterizing the motions of H in the protein. The
method is illustrated by obtaining the intrinsic MSD of heparan sulphate
(HS-0.4), Ribonuclease A and Staphysloccal Nuclase (SNase) from data in the
literature
Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning
Cataloged from PDF version of article.Poly(vinylpyrolidone) (PVP) nanofibers incorporating gold nanoparticles (Au-NPs) were produced in combination with laser ablation and electrospinning techniques. The Au-NPs were directly synthesized in PVP solution by laser ablation and then, the electrospinning of PVP/Au-NPs solution was carried out for obtaining nanofibrous composites. The presence of Au-NPs in the PVP nanofibers was confirmed by SEM, TEM and EDX analyses. The SEM imaging elucidated that the electrospun PVP/Au-NPs nanofibers were bead-free having average fiber diameter of 810 ± 480 nm. The TEM imaging indicated that the Au-NPs were in spherical shape having diameters in the range of 5 to 20 nm and the Au-NPs were more or less dispersed homogeneously in the PVP nanofiber matrix. The FTIR study suggested the presence of molecular interactions between PVP matrix and the Au-NPs in the nanofibrous composites. The UV–Vis measurement confirmed the enhancement of the optical properties of the PVP/Au-NPs nanofibers in the solid state due to the surface plasma resonance effect of Au-NPs
Opinion Mining on Non-English Short Text
As the type and the number of such venues increase, automated analysis of
sentiment on textual resources has become an essential data mining task. In
this paper, we investigate the problem of mining opinions on the collection of
informal short texts. Both positive and negative sentiment strength of texts
are detected. We focus on a non-English language that has few resources for
text mining. This approach would help enhance the sentiment analysis in
languages where a list of opinionated words does not exist. We propose a new
method projects the text into dense and low dimensional feature vectors
according to the sentiment strength of the words. We detect the mixture of
positive and negative sentiments on a multi-variant scale. Empirical evaluation
of the proposed framework on Turkish tweets shows that our approach gets good
results for opinion mining
Photoluminescent electrospun polymeric nanofibers incorporating germanium nanocrystals
Cataloged from PDF version of article.The photoluminescent germanium nanocrystals (Ge-NCs) were successfully incorporated into electrospun polymeric nanofiber matrix in order to develop photoluminescent nanofibrous composite web. In the first step, the synthesis of Ge-NCs was achieved by nanosecond pulsed laser ablation of bulk germanium wafer immersed in organic liquid. The size, the structural and the chemical characteristics of Ge-NCs investigated by TEM, XPS, XRD and Raman spectroscopy revealed that the Ge-NCs were highly pure and highly crystalline having spherical shape within 3–20 nm particle size distribution. In the second step, Ge-NCs were mixed with polyvinyl alcohol (PVA) polymer solution, and then, Ge-NC/PVA nanofibers were obtained via electrospinning technique. The electrospinning of Ge-NCs/PVA nanoweb composite structure was successful and bead-free Ge-NCs/PVA nanofibers having average fiber diameter of 185 ± 40 nm were obtained. The STEM analysis of the electrospun Ge-NCs/PVA nanofibers elucidated that the Ge-NCs were distributed homogeneously in the polymeric nanofiber matrix. The UV–Vis absorption and photoluminescence spectroscopy studies indicated the quantum confinement effect of Ge-NCs on the optical properties of the electrospun Ge-NCs/PVA nanoweb
Recommended from our members
MBotCS: A mobile botnet detection system based on machine learning
As the use of mobile devices spreads dramatically, hackers have started making use of mobile botnets to steal user information or perform other malicious attacks. To address this problem, in this paper we propose a mobile botnet detection system, called MBotCS. MBotCS can detect mobile device traffic indicative of the presence of a mobile botnet based on prior training using machine learning techniques. Our approach has been evaluated using real mobile device traffic captured from Android mobile devices, running normal apps and mobile botnets. In the evaluation, we investigated the use of 5 machine learning classifier algorithms and a group of machine learning box algorithms with different validation schemes. We have also evaluated the effect of our approach with respect to its effect on the overall performance and battery consumption of mobile devices
Bioinspired Optoelectronic Nose with Nanostructured Wavelength-Scalable Hollow-Core Infrared Fibers
Cataloged from PDF version of article.A digital photonic nose concept based on infrared absorption inside a hollow core infrared-transmitting fi ber array is presented. Wavelength- scalable photonic bandgap fi bers fi lter specifi c energy photons from a blackbody source, where volatile compounds selectively absorb photons depending on their chemical absorption spectrum. The pattern resulting in the detector array is processed as a binary signature
Autologous anti-SOX2 antibody responses reflect intensity but not frequency of antigen expression in small cell lung cancer
Cataloged from PDF version of article.Background: Anti-SOX2 antibody responses are observed in about 10 to 20% of small cell lung cancer (SCLC) patients. The aim of this study was to determine whether such responses reflect a particular pattern of SOX2 protein expression in the tumor and whether this pattern associates with clinical outcome. Methods. Paraffin embedded tumor tissues, obtained from SCLC patients who had no evidence of paraneoplastic autoimmune degeneration, were evaluated for SOX2 expression by immunohistochemistry for both intensity and extent of staining. Sera from the same patients were tested for autologous antibodies against recombinant SOX2 by enzyme-linked immunosorbent assay (ELISA). Correlates between overall survival and various clinical parameters including SOX2 staining and serology were determined. Results: SOX2 protein expression was observed in tumor tissue in 89% of patients. Seventeen patients (29%) were seropositive for SOX2 antibodies and, in contrast to SOX2 staining, the presence of antibody correlated with limited disease stage (p = 0.05). SOX2 seropositivity showed a significant association with the intensity of SOX2 staining in the tumor (p = 0.02) but not with the frequency of SOX2 expressing cells. Conclusion: Anti-SOX2 antibodies associate with better prognosis (limited stage disease) while SOX2 protein expression does not; similar to reports from some earlier studies. Our data provides an explanation for this seemingly contrasting data for the first time as SOX2 antibodies can be observed in patients whose tumors contain relatively few but strongly staining cells, thus supporting the possible presence of active immune-surveillance and immune-editing targeting SOX2 protein in this tumor type. © 2014 Atakan et al.; licensee BioMed Central Ltd
Quantum-dot single-photon sources for entanglement enhanced interferometry
The authors acknowledge financial support from the Center for Integrated Quantum Science and Technology (IQST).Multiphoton entangled states such as “N00N states” have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.PostprintPostprintPeer reviewe
Quantum-dot single-photon sources for entanglement enhanced interferometry
The authors acknowledge financial support from the Center for Integrated Quantum Science and Technology (IQST).Multiphoton entangled states such as “N00N states” have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.PostprintPostprintPeer reviewe
- …
