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2Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems,

Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
3Institute of Semiconductor and Solid State Physics,

Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
4Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany

5SUPA, School of Physics and Astronomy, University of St. Andrews KY 16 9SS, Scotland, United Kingdom
(Dated: May 11, 2017)

Multi-photon entangled states such as ‘N00N states’ have attracted a lot of attention because of
their possible application in high-precision, quantum enhanced phase determination. So far, N00N
states have been generated in spontaneous parametric down-conversion processes and by mixing
quantum and classical light on a beam splitter. Here, in contrast, we demonstrate super-resolving
phase measurements based on two-photon N00N states generated by quantum dot single-photon
sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed reso-
nance fluorescence of a charged exciton state, we achieve, in post selection, a quantum enhanced
improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum
limit. An analytical description of the measurement scheme is provided, reflecting requirements,
capability and restraints of single-photon emitters in optical quantum metrology. Our results point
towards the realization of a real-world quantum sensor in the near future.

Optical quantum metrology provides a route to en-
hance sensing applications by utilizing, e.g., non-classical
states of light [1–4]. For many photonic sensing schemes,
a general task is measuring a phase ϕ with a precision
∆ϕ. Here, the maximum achievable precision is subject
to several limitations. The most fundamental boundary,
based on a quantum mechanical uncertainty principle,
is the so called Heisenberg limit (HL). It relates the er-
ror of phase estimation ∆ϕ with the photon number N
used for the measurement to ∆ϕHL = 1/N [1]. However,
as a consequence of the central limit theorem of statis-
tics, the phase determination of interferometric sensing
schemes utilizing classical light states, is restricted to
the so-called standard quantum limit (SQL), scaling with
∆ϕSQL = 1/

√
N in absence of losses. On the contrary,

a maximally path-entangled multi-photon state, a so-
called N00N state |Φ〉N = 1√

2
(|N, 0〉 + |0, N〉), acquires

a phase at a rate N times as fast as classical light. As a
consequence, the frequency of the obtained interference
fringe pattern is increased by a factor of N , referred to
as super-resolution [5, 6]. If the contrast of the oscil-
lations, exceeds the threshold Cth = 1/

√
N , the regime

of super-sensitivity [7, 8] is reached. In this case, the
entanglement allows for quantum enhanced phase mea-
surements outperforming the SQL and approaching the
fundamental Heisenberg limit. Practical imperfections,
such as loss, decoherence, state preparation and detec-
tor inefficiency can degrade this quantum enhancement.
Therefore, a careful resource accounting is necessary to
judge real-world enhancement [9].

So far, various schemes for generating N00N states
have been realized and phase super-resolution has been

demonstrated in a number of studies [10–14]. Phase
super-sensitivity, or beating the SQL has been demon-
strated with four entangled photons using post selected
state projection to study the N00N component of various
initial N -photon states [15]. The largest N00N state gen-
erated to date contained 5 photons by mixing quantum
and classical light [16].

Up to now, majority of multi-photon interference real-
izations concerning path-entangled photon states relied
on parametric down-conversion photon sources, partially
in heralding operation modes. In this letter, we focus
on single semiconductor quantum dots (QD) and inves-
tigate their potential as single-photon sources in an op-
tical quantum metrology scheme. These emitters of non-
classical light can be operated with high efficiency and
brightness [17, 18] to generate, e.g., entangled photon
states [19]. At the same time, compact on-chip imple-
mentation is feasible [20, 21]. Recently, off and on-chip
implementations of an entangling CNOT gate operat-
ing with quantum dot micro-pillar single-photon sources
have been demonstrated [22, 23]. Biphotonic interference
of photons generated by a semiconductor quantum dot,
however based on entanglement in the polarization de-
gree of freedom [24, 25], has been used to demonstrate
phase super-resolution [26]. Just recently, the same effect
with path-entangled photon states from a quantum dot
was realized in an on-chip experiment [14]. However, the
regime of phase super-sensitivity has not been attained
using a deterministic single-photon emitter, so far.

Here, we present an experimental realization of the
generation of two-photon N00N states by using the ra-
diative recombination of excitonic states in a single semi-
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FIG. 1. (a) Two-photon excitation scheme via a virtual state (dashed line) and the cascaded emission of a pair of biexciton (XX )
and exciton (X ) single-photons with corresponding spectrum (only one of the two available recombination paths (|↑⇓, ↓⇑〉XX →
|↑⇓〉X or |↓⇑〉Y → |G〉) is considered in the conducted experiment). (b) Pulsed resonance-fluorescence of a charged exciton (T )
in a quantum dot with corresponding spectrum. (c) Intrinsically phase-stable double-path Sagnac interferometer [15] with laser
excitation scheme. First, beam splitter 2 (BS2) serves as the second part of an unbalanced MZI (with beam splitter 1 (BS1)) to
generate the |Φ〉2 = (|20〉+ |02〉)/

√
2 state by exploiting two-photon interference at a position BS2′ [27]. The path-entanglement

is then probed via phase dependent autocorrelation measurements again on BS2, on a second interference position BS2′′. By
rotating a phase plate (an ordinary glass plate in our case) in one of the arms, the relative phase difference ϕ between the two
paths (blue dotted and solid lines) is varied. (d) Unfolded scheme of the photon path in the Sagnac interferometer.

conductor quantum dot. Such a single quantum emitter
is coherently and resonantly driven by employing two dif-
ferent excitation schemes on two different samples. In the
first one, a biexciton state of the QD is deterministically
prepared via a two-photon excitation process [28–31], re-
sulting in the emission of a pair of single-photons from
the biexciton (XX ) – exciton (X ) – ground-state (G) cas-
cade [Fig. 1 (a)]. In the second one, a charged exciton, a
so-called trion (T ) is excited via a pulsed single-photon
resonance-fluorescence scheme [Fig. 1 (b)]. Both meth-
ods lead to the deterministic generation of pure single-
photons of high optical and quantum-optical quality (see
Supplementary Material), which allow for the production
of two-photon N00N states and the observation of phase
super-resolution, and even phase super-sensitivity for the
T state.

The experimental setup is illustrated in Fig. 1 (c),(d).
Applying a double pulse excitation scheme on the QD,
two consecutively emitted photons (either X, XX or T,
respectively) with a time separation ∆t are launched into
an unbalanced Mach-Zehnder interferometer (MZI), con-
sisting of beam splitters BS1 and BS2. Here, the initial
time separation between the photons can be compensated
by the delay ∆t in the MZI, so that they impinge si-
multaneously onto BS2 from different input ports (red
spheres) [27]. At the interference point (which we de-
note as BS2′), the Hong-Ou-Mandel (HOM) effect [32]
for identical bosonic particles causes then the generation
of the two-particle path-entangled state

|Φ〉2 = (|2〉 ⊗ |0〉+ |0〉 ⊗ |2〉) /
√

2

= (|20〉+ |02〉) /
√

2 ,
(1)

which implies that both photons can only be detected
together in either one of the two exit ports of BS2′ (blue
spheres). The biphotonic N00N state evolves by passing
through the Sagnac type double-path interferometer in
which a relative phase eiϕ is acquired in one mode, in-
troduced by turning an ordinary glass plate. Here, the
chosen Sagnac interferometer design serves as an intrinsi-
cally phase stable realization of a balanced MZI consist-
ing of BS2′ and BS2′′ [see Fig. 1 (c),(d)], with BS2′′ being
the position on BS2 where photons meet after traveling
the interferometer. Because of the non-classical nature,
the photonic state picks up the phase N = 2 times faster
than a coherent state would do [33]:

|Φ〉2
ϕ→
(
|20〉+ ei2ϕ |02〉

)
/
√

2 (2)

The coherence of this state is determined by measuring
the phase dependent coincidence probability after BS2′′

on detector D1 and D2:

PD1,D2 = [1 + cos(2ϕ)]/2 (3)

Thus, an oscillating behavior with a frequency according
to twice of the imprinted phase is expected in the in-
tensity autocorrelation measurement. Since the two con-
secutive single-photons emitted by the QD can arrive at
BS2′ with delays of 0,±∆t and ±2∆t with ∆t = 4.4 ns,
we expect clusters of five peaks separated by the pump
laser repetition period (13.1 ns) in the measured coinci-
dence histogram (cluster Cl1,2,3 in Fig. 2). Because of
the large spacing between neighboring peaks of a single
excitation cycle, the two outermost peaks of each side
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FIG. 2. Coincidence histogram simulation and data for the
trion line. The black lines Cl1, Cl2, and Cl3 show the ex-
pected five peak clusters which are separated by the laser
repetition period of 13.1 ns for a phase shift of ϕ = π/2.
In this special case the outcome is the same as for a typi-
cal Hong-Ou-Mandel experiment. The sum of these clusters
(ΣCl i) displays the expected histogram which is in very good
agreement with the measurement (top green line). The two
green lines for phase shifts of ϕ = 0 and ϕ = π reflect mea-
surement situations of constructive biphotonic interference.

of the cluster temporally overlap with the correspond-
ing peaks from the previous/successive cluster (ΣCli in
Fig. 2). However, the central peak, which reflects the de-
sired situation when both photons arrive at the same time
at beam splitter BS2′ is well resolved and not affected
by any overlap of the ∆t time separation between the
pulses. A selection of measurements using photons from
the T decay is depicted in the lower part of Fig. 2 (green
solid lines) for three distinct phase settings. By adjust-
ing the relative phase to ϕ = π/2, the intensity distribu-
tion in the output modes of BS2′ and BS2′′ are identical
and correspond to the outcome of a typical two-photon
interference measurement. The almost vanishing coinci-
dence peak at zero detection delay indicates a high degree
of indistinguishability of consecutive photons emitted by
the QD. As discussed later, the ability to generate this
pure, nearly transform-limited single-photons essentially
defines the coherence of the biphotonic N00N state. In
contrary, setting the relative phase ϕ between the paths
to 0 or π leads to constructive interference in the coin-
cidence peak. (Further details about the occurrence and
oscillating behavior of the coincidence peaks at non-zero
detection delay as well as a complete theoretical analysis
can be found in the Supplementary Material).

The full phase dependency of the intensity correlation
is shown in Fig. 3. In the first row, single-photon inter-
ference with a frequency of νi with i = {X,XX, T} is
observed by blocking one input of BS2′ and using only
one of the two detectors. The respective fringe contrasts
of C1,X = 0.91(1), C1,XX = 0.90(1) and C1,T = 0.99(1)

confirm the viability of the interferometer, that is, a suf-
ficient mode overlap on beam splitter BS2′′. In the next
step, the blocked path is reopened to enable the gen-
eration of N00N states with N = 2 through the previ-
ously described Hong-Ou-Mandel effect. The phase de-
pendent post selected coincidence rates between both de-
tectors are displayed in the second row of Fig. 3. Highly
pronounced oscillations with twice the single-photon fre-
quency are a strong indication for the successful gener-
ation of biphotonic path-entangled states. However, a
strong deviation in the amplitude and the contrast be-
tween the experiments of the three different single-photon
input states X, XX and T is obvious.

To get more insight into the underlying processes, the
common beam splitter and phase transformations were
applied to the individual input states to model the data.
The probability to measure a coincidence event can then
be expressed as a function of two additional parameters,
the two-photon interference visibility VHOM and the spa-
tial mode overlap of the entire interferometer η =

√
η′η′′

with overlaps η′ on BS2′ and η′′ on BS2′′, respectively:

Pexp
D1,D2 =

1

4
[2 + η2(1− η2VHOM)

+η2(1 + η2VHOM) cos(2ϕ)]
(4)

For ideal experimental conditions and entirely identical
photons (η = VHOM = 1), this relation reduces to Eq. 3,
giving rise to the expected oscillations with maximum
contrast. The contrast is defined by (Imax−Imin)/(Imax+
Imin) with Imax the maximum and Imin the minimum
signal of the oscillation. As pointed out before, for dis-
tinct phase settings of odd integer multiples of π/2, the
measurement corresponds to a Hong-Ou-Mandel type
two-photon interference experiment. These are the data
points at the minima of the oscillations, hence the two-
photon output probability is the limiting factor for Imin.
In contrast, the influence of η is related to the maxi-
mum values of the oscillations Imax of the N00N state
measurement, and is also reflected in the visibility of the
single-photon oscillations.

Applying the model to the data, N00N state fringe
contrasts of C2,X = 0.44(1) and C2,XX = 0.54(1) are

TABLE I. Summarized measurement results. g(2)(0) gives the
multi-photon emission probability, η the spatial beam overlap
of the entire Mach-Zehnder interferometer, VHOM the two-
photon interference visibility and CN=i with i = {1, 2} the
N00N state interference visibility.

g(2)(0) η VHOM CN=1 CN=2

X 0.004(2) 0.91(1) 0.43(4) 0.91(1) 0.44(1)

XX 0.003(2) 0.88(1) 0.76(3) 0.90(1) 0.54(1)

T 0.003(3) 0.99(1) 0.92(4) 0.99(1) 0.87(2)
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FIG. 3. Phase dependent single-photon count rates (top row) and biphotonic coincidence rates (bottom row) for (a) X, (b)
XX and (c) T. Phase super-resolution is achieved in all three cases. Insufficient two-photon interference visibility (e.g. X ),
or inadequate spatial mode overlap (e.g. XX ) can prevent super-sensitivity. On the contrary, the measurement using photons
from the T decay shows an improvement of phase precision beyond the standard quantum limit (see main text). Error bars
represent the statistical error of the coincidence measurement.

extracted. The X and XX photons, generated by two-
photon excitation are strongly limited by the rather low
mode overlap of the measurement device. This becomes
crucial especially for the XX photons, which show an ad-
equate Hong-Ou-Mandel visibility of VHOM,XX = 0.76(3)
to outperform the SQL. Here, a threshold mode overlap
of ηth,XX = 0.97 would be sufficient to generate the re-
quired N00N state contrast. The emitted photons from
the X state suffer from a time jitter induced by the XX
recombination lifetime, resulting in an insufficient Hong-
Ou-Mandel visibility of VHOM,X = 0.43(4).

In a subsequent set of experiments a spatial mode
cleaner, realized by implementing single-mode fibers
(coupling efficiency > 0.95) in the detection path, dras-
tically increases the single-photon oscillation contrast to
near unity (top of Fig. 3 (c)). Additionally, the pulsed
resonant excitation of a charged exciton T , realized by
a confocal setup geometry including cross-polarization
of the scattered laser light, revealed exceptionally high
two-photon interference visibility of VHOM,T = 0.92(4).
The reason for the successful generation of these nearly
transform-limited photons [34–36] emitted by the res-
onantly pumped T state is mainly attributed to the

high purity of the sample achieved by the growth mode
[37]. In combination, the increased mode overlap and
high two-photon interference visibility result in a contrast
visibility of the biphotonic N00N state measurement of
C2,T = 0.87(1), exceeding the threshold given by the SQL
(Cth = 0.71).

Phase super-resolution can also be realized by utilizing
classical light sources, and is no evidence for the gen-
eration of a non-classical N00N state [39]. Quite the
contrary, in a perfect setup (η = 1) single-photons with
vanishing two-photon interference visibility (VHOM = 0)
would still show oscillations with doubled frequency, how-
ever limited to an oscillation visibility of 1/3. The ex-
ploitation of entanglement comes into effect only when
the contrast surpasses the classical limit of Cth = 1/

√
N ,

in which case phase super-sensitive measurements are
theoretically feasible. While fulfilling this requirement
unambiguously proves the non-classical nature of the
used light states, yet it does not make a statement about
the measurement precision compared to a scheme using
classical light in context of resource counting. By taking
into account real world imperfections such as losses and
non-unity efficiencies, the threshold to beat the classi-
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cal limit, which is then given by the so-called standard
interferometric limit (SIL), has to be redefined [9, 40].
Including these effects, the redefined threshold is given
by Cth =

√
1/ξp(ξiξd)N−1N , with the N00N state gen-

eration efficiency ξp, the interferometer transmissivity ξi
(here: 0.90) and detection probability ξd (here: 0.45).
Here, the classical limit is determined by considering a
coherent state, experiencing the same losses ξi and detec-
tion efficiencies ξd. To surpass this contrast threshold,
for a N00N state, Cth < 1 as well as CN > Cth must
be fulfilled, putting stringent bounds on source, setup
and detection performance. To our knowledge, there has
been no experiment accomplishing these conditions at the
same time. Due to the sample design which is not op-
timized for high extraction efficiencies (∼ 0.01), and the
non-perfect two-photon interference visibility as well as
the factor of 0.25 due to the setup design (only in one out
of four cases two consecutive emitted photons impinge on
BS2′ from opposite sides) the absolute N00N state gen-
eration probability in the scheme presented in this work
scales with ξp ∼ 10−5, ruling out any attempt for non
post selected super-sensitive phase estimation. Here, the
setup design inefficiency can be circumvented either by
a simple fast optical switch or a more challenging ap-
proach of utilizing two remote QD sources. To reveal
the fundamental potential of QDs as photon sources in
such an interferometric scheme, we may assume state-of-
the-art performance concerning indistinguishability (0.99
[41–43]), photon extraction (0.80 [17, 18]), as well as cut-
ting edge detector efficiencies (0.95 [44]). By doing so, we
obtain Cth = 0.96 as well as Copt

N=2 = 0.96, which shows
that real-world quantum sensors based on semiconduc-
tor quantum dots come into close reach of entanglement
enhanced precision measurements with already available
technologies [45].

From a practical point of view, such a sensor has the
great benefit of being able to be operated at high over-
all single-photon rates (up to GHz), which is an essential
precondition for fast sensing applications, though putting
an additional requirement on the potential sources. Also
schemes for producing higher (N > 2) non-classical N -
photon states using N independently generated photons
will largely profit from on-demand sources due to an ad-
vantageous scaling behavior [47, 48].

In summary, we have demonstrated phase super-
resolution and phase super-sensitivity in post selection
of biphotonic N00N states by utilizing photons emitted
from a semiconductor quantum dot. We provided an
analytical description of the interferometric scheme and
could thereby fully reproduce and verify the measured
data. In a treatment taking into account real-world im-
perfections we have determined the high potential and
limitations of such a device for future applications.
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Center for Integrated Quantum Science and Technology
(IQST).

∗ m.mueller@ihfg.uni-stuttgart.de
† p.michler@ihfg.uni-stuttgart.de

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev.
Lett. 96, 010401 (2006).

[2] J. P. Dowling, Contemp. Phys. 49, 125 (2008).
[3] M. Kacprowicz, R. Demkowicz-Dobrzański,
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Rev. Lett. 82, 2868 (1999).
[7] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[8] A. Kuzmich and L. Mandel, Quantum Semiclassical Opt.

J. Eur. Opt. Soc. Part B 10, 493 (1998).
[9] N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang,

U. Dorner, and I. A. Walmsley, Phys. Rev. Lett. 107,
113603 (2011).

[10] J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk,
R. A. Campos, M. C. Teich, and B. E. A. Saleh, Phys.
Rev. Lett. 65, 1348 (1990).

[11] D. Bouwmeester, Nature 429, 139 (2004).
[12] P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gas-

paroni, and A. Zeilinger, Nature 429, 158 (2004).
[13] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg,

Nature 429, 161 (2004).
[14] A. J. Bennett, J. P. Lee, D. J. P. Ellis, T. Meany, E. Mur-

ray, F. F. Floether, J. P. Griffths, I. Farrer, D. A. Ritchie,
and A. J. Shields, Sci. Adv. 2, e1501256 (2016).

[15] T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and
S. Takeuchi, Science 316, 726 (2007).

[16] I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879
(2010).

[17] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffren-
nou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M.
Gérard, Nat. Photon. 4, 174 (2010).

[18] O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold,
A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemâıtre,
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White, L. Lanco, and P. Senellart, Nat. Photon. 10,
340 (2016).

[43] S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu,
J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and
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