72 research outputs found

    Role of protein kinase R in the killing of Leishmania major by macrophages in response to neutrophil elastase and TLR4 via TNF and IFN

    Get PDF
    In cutaneous leishmaniasis, Leishmania amazonensis activates macrophage double-stranded, RNA-activated protein kinase R (PKR) to promote parasite growth. In our study, Leishmania major grew normally in RAW cells, RAW-expressing dominant-negative PKR (PKR-DN) cells, and macrophages of PKR-knockout mice, revealing that PKR is dispensable for L. major growth in macrophages. PKR activation in infected macrophages with poly I:C resulted in parasite death. Fifty percent of L. major-knockout lines for the ecotin-like serine peptidase inhibitor (ISP2; Δisp2/isp3), an inhibitor of neutrophil elastase (NE), died in RAW cells or macrophages from 129Sv mice, as a result of PKR activation. Inhibition of PKR or NE or neutralization of Toll-like receptor 4 or 2(TLR4 or TLR2) prevented the death of Δisp2/isp3. Δisp2/isp3 grew normally in RAW-PKR-DN cells or macrophages from 129Sv pkr−/−, tlr2−/−, trif−/−, and myd88−/− mice, associating NE activity, PKR, and TLR responses with parasite death. Δisp2/isp3 increased the expression of mRNA for TNF-α by 2-fold and of interferon β (IFNβ) in a PKR-dependent manner. Antibodies to TNF-α reversed the 95% killing by Δisp2/isp3, whereas they grew normally in macrophages from IFN receptor–knockout mice. We propose that ISP2 prevents the activation of PKR via an NE-TLR4-TLR2 axis to control innate responses that contribute to the killing of L. major.—Faria, M. S., Calegari-Silva, T. C., de Carvalho Vivarini, A., Mottram, J. C., Lopes, U. G., Lima, A. P. C. A. Role of protein kinase R in the killing of Leishmania major by macrophages in response to neutrophil elastase and TLR4 via TNFα and IFNβ

    Evaluacija inovativno digitalno kontroliranog Er:YAG lasera u liječenju leukoplakije - probno istraživanje

    Get PDF
    The use of lasers for treatment of oral leukoplakia has gained a lot of interest in the past years, however, data on the use of Er:YAG laser are scarce. The aim of this study was to compare the efficacy of Er:YAG laser and 1% topical isotretinoin in the treatment of 27 oral leukoplakia patients. Er:YAG laser (LightWalker AT, Fotona, Slovenia) was used in 27 patients with 27 leukoplakia lesions. Postoperative pain was assessed by use of visual analog scale (VAS), and the impact of laser treatment on the quality of life was assessed by the OHIP-14 questionnaire (Croatian version). Control group consisted of the same 27 patients previously treated with 1% topical isotretionin three times a day during the period of one year. No improvement in the size of leukoplakia lesions was observed after treatment with topical isotretinoin. There were significant differences between men and women according to leukoplakia localization, number of laser sessions and VAS (p<0.05). At follow-up after six months and one year, there was no recurrence of lesions. Er:YAG laser is a successful treatment for oral leukoplakia. Topical isotretionin treatment is unsuccessful in patients with oral leukoplakia.Posljednjih godina postoji veliko zanimanje za upotrebu lasera u liječenju oralne leukoplakije, ali su podatci o upotrebi Er:YAG lasera malobrojni. Cilj ovoga istraživanja bio je usporediti učinak Er:YAG lasera i 1%-tnog topikalnog izotretinoina u liječenju 27 bolesnika s oralnom leukoplakijom. Er:YAG laser (LightWalker AT, Fotona, Slovenia) je korišten u 27 bolesnika s 27 leukoplakičnih lezija. Poslijeoperacijska bol je određena uz pomoć vizualne analogne ljestvice (visual analog scale, VAS), a utjecaj na kvalitetu života mjeren je pomoću upitnika OHIP-14 (hrvatska verzija). Kontrolna skupina se sastojala od istih 27 bolesnika koji su prije toga liječeni 1%-tnim topikalnim izotretioninom tri puta na dan tijekom tri mjeseca. Nije bilo poboljšanja u veličini lezija leukoplakije nakon topikalno primijenjenog izotretinoina. Utvrđene su značajne razlike između muškaraca i žena s obzirom na lokalizaciju leukoplakije, broj laserskih zahvata i rezultata VAS (p<0,05). Šest mjeseci i godinu dana od laserskog zahvata nije bilo recidiva oralne leukoplakije. Er:YAG laser je uspješna terapija u liječenju oralne leukoplakije. Topikalna primjena izotretionina nije uspješna u liječenju oralne leukoplakije

    The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review

    Get PDF
    Capsaicin is a chili peppers extract, genus Capsicum, commonly used as a food spice. Since ancient times, Capsaicin has been used as a "homeopathic remedy" for treating a wild range of pathological conditions but without any scientific knowledge about its action. Several studies have demonstrated its potentiality in cardiovascular, nephrological, nutritional, and other medical fields. Capsaicin exerts its actions thanks to the bond with transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is a nociceptive receptor, and its activation starts with a neurosensitive impulse, responsible for a burning pain sensation. However, constant local application of Capsaicin desensitized neuronal cells and leads to relief from neuropathic pain. In this review, we analyze the potential adjuvant role of Capsaicin in the treatment of different pathological conditions either in internal medicine or dentistry. Moreover, we present our experience in five patients affected by oro-facial pain consequent to post-traumatic trigeminal neuropathy, not responsive to any remedy, and successfully treated with topical application of Capsaicin. The topical application of Capsaicin is safe, effective, and quite tolerated by patients. For these reasons, in addition to the already-proven beneficial actions in the internal field, it represents a promising method for the treatment of neuropathic oral diseases

    TLR2, TLR4 and Protein kinase R (PKR) induced Type I Interferon sustains infection of Leishmania donovani in macrophages

    Get PDF
    Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-β). Here, we show that the gene expression of IFN-β by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2 (-/-) mice, while the levels in macrophages from myd88(-/-) mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2 (-/-) macrophages completely abolished induction of IFN-β gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2 (-/-)) or from protein kinase R (PKR) knock-out mice (pkr (-/-)), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr (-/-) macrophages but was fully restored by the addition of exogenous IFN-β, and parasite burdens were reduced in the spleen of pkr (-/-) mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development

    Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: Modulation of Innate Immune System and Variations in Carbohydrate Structure

    Get PDF
    The essential role of the lipophosphoglycan (LPG) of Leishmania in innate immune response has been extensively reported. However, information about the role of the LPG-related glycoinositolphospholipids (GIPLs) is limited, especially with respect to the New World species of Leishmania. GIPLs are low molecular weight molecules covering the parasite surface and are similar to LPG in sharing a common lipid backbone and a glycan motif containing up to 7 sugars. Critical aspects of their structure and functions are still obscure in the interaction with the vertebrate host. In this study, we evaluated the role of those molecules in two medically important South American species Leishmania infantum and L. braziliensis, causative agents of visceral (VL) and cutaneous Leishmaniasis (CL), respectively. GIPLs derived from both species did not induce NO or TNF-α production by non-primed murine macrophages. Additionally, primed macrophages from mice (BALB/c, C57BL/6, TLR2−/− and TLR4−/−) exposed to GIPLs from both species, with exception to TNF-α, did not produce any of the cytokines analyzed (IL1-β, IL-2, IL-4, IL-5, IL-10, IL-12p40, IFN-γ) or p38 activation. GIPLs induced the production of TNF-α and NO by C57BL/6 mice, primarily via TLR4. Pre incubation of macrophages with GIPLs reduced significantly the amount of NO and IL-12 in the presence of IFN-γ or lipopolysaccharide (LPS), which was more pronounced with L. braziliensis GIPLs. This inhibition was reversed after PI-specific phospholipase C treatment. A structural analysis of the GIPLs showed that L. infantum has manose rich GIPLs, suggestive of type I and Hybrid GIPLs while L. braziliensis has galactose rich GIPLs, suggestive of Type II GIPLs. In conclusion, there are major differences in the structure and composition of GIPLs from L. braziliensis and L. infantum. Also, GIPLs are important inhibitory molecules during the interaction with macrophages

    Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis [version 2; referees : 4 approved]

    Get PDF
    Background: Human visceral leishmaniasis, caused by infection with Leishmania donovani or L. infantum, is a potentially fatal disease affecting 50,000-90,000 people yearly in 75 disease endemic countries, with more than 20,000 deaths reported. Experimental models of infection play a major role in understanding parasite biology, host-pathogen interaction, disease pathogenesis, and parasite transmission. In addition, they have an essential role in the identification and pre-clinical evaluation of new drugs and vaccines. However, our understanding of these models remains fragmentary. Although the immune response to Leishmania donovani infection in mice has been extensively characterized, transcriptomic analysis capturing the tissue-specific evolution of disease has yet to be reported. Methods: We provide an analysis of the transcriptome of spleen, liver and peripheral blood of BALB/c mice infected with L. donovani. Where possible, we compare our data in murine experimental visceral leishmaniasis with transcriptomic data in the public domain obtained from the study of L. donovani-infected hamsters and patients with human visceral leishmaniasis. Digitised whole slide images showing the histopathology in spleen and liver are made available via a dedicated website, www.leishpathnet.org. Results: Our analysis confirms marked tissue-specific alterations in the transcriptome of infected mice over time and identifies previously unrecognized parallels and differences between murine, hamster and human responses to infection. We show commonality of interferon-regulated genes whilst confirming a greater activation of type 2 immune pathways in infected hamsters compared to mice. Cytokine genes and genes encoding immune checkpoints were markedly tissue specific and dynamic in their expression, and pathways focused on non-immune cells reflected tissue specific immunopathology. Our data also addresses the value of measuring peripheral blood transcriptomics as a potential window into underlying systemic disease. Conclusions: Our transcriptomic data, coupled with histopathologic analysis of the tissue response, provide an additional resource to underpin future mechanistic studies and to guide clinical research

    Endoplasmic Stress Affects the Coinfection of Leishmania Amazonensis and the Phlebovirus (Bunyaviridae) Icoaraci

    No full text
    Viral coinfections can modulate the severity of parasitic diseases, such as human cutaneous leishmaniasis. Leishmania parasites infect thousands of people worldwide and cause from single cutaneous self-healing lesions to massive mucosal destructive lesions. The transmission to vertebrates requires the bite of Phlebotomine sandflies, which can also transmit Phlebovirus. We have demonstrated that Leishmania infection requires and triggers the Endoplasmic stress (ER stress) response in infected macrophages. In the present paper, we tested the hypothesis that ER stress is increased and required for the aggravation of Leishmania infection due to coinfection with Phlebovirus. We demonstrated that Phlebovirus Icoaraci induces the ER stress program in macrophages mediated by the branches IRE/XBP1 and PERK/ATF4. The coinfection with L. amazonensis potentiates and sustains the ER stress, and the inhibition of IRE1α or PERK results in poor viral replication and decreased parasite load in macrophages. Importantly, we observed an increase in viral replication during the coinfection with Leishmania. Our results demonstrated the role of ER stress branches IRE1/XBP1 and PERK/ATF4 in the synergic effect on the Leishmania increased load during Phlebovirus coinfection and suggests that Leishmania infection can also increase the replication of Phlebovirus in macrophages
    corecore