670 research outputs found

    Can Twitter be a source of information on allergy? Correlation of pollen counts with tweets reporting symptoms of allergic rhinoconjunctivitis and names of antihistamine drugs

    Get PDF
    Pollen forecasts are in use everywhere to inform therapeutic decisions for patients with allergic rhinoconjunctivitis (ARC). We exploited data derived from Twitter in order to identify tweets reporting a combination of symptoms consistent with a case definition of ARC and those reporting the name of an antihistamine drug. In order to increase the sensitivity of the system, we applied an algorithm aimed at automatically identifying jargon expressions related to medical terms. We compared weekly Twitter trends with National Allergy Bureau weekly pollen counts derived from US stations, and found a high correlation of the sum of the total pollen counts from each stations with tweets reporting ARC symptoms (Pearson's correlation coefficient: 0.95) and with tweets reporting antihistamine drug names (Pearson's correlation coefficient: 0.93). Longitude and latitude of the pollen stations affected the strength of the correlation. Twitter and other social networks may play a role in allergic disease surveillance and in signaling drug consumptions trends

    Modelling of methanol synthesis in a network of forced unsteady-state ring reactors by artificial neural networks for control purposes

    Get PDF
    A numerical model based on artificial neural networks (ANN) was developed to simulate the dynamic behaviour of a three reactors network (or ring reactor), with periodic change of the feed position, when low-pressure methanol synthesis is carried out. A multilayer, feedforward, fully connected ANN was designed and the history stack adaptation algorithm was implemented and tested with quite good results both in terms of model identification and learning rates. The influence of the ANN parameters was addressed, leading to simple guidelines for the selection of their values. A detailed model was used to generate the patterns adopted for the learning and testing phases. The simplified model was finalised to develop a model predictive control scheme in order to maximise methanol yield and to fulfil process constraints

    Photoemission tuning of nanodiamond particles treated in variable percentages of H2H_2-N2N_2 plasmas

    Get PDF
    This work deals with photochatodes (PCs) based on as-received and treated nanodiamond (ND) particles, 250 nm in size. The aim of this study is the hydro-, hydro-/nitro- and nitro-genation of NDs performed in microwave plasmas adding different N2N_2 percentages (0, 50 and 100 %) to pure H2H_2 gas. Untreated and treated NDs are dispersed in solvents such as 1,2-dichloroethane and deionized water, and then deposited, as continuous layers, on p-Si and kapton substrates by the pulsed spray technique. The produced layers are characterized by Raman, photoluminescence spectroscopies and photoemission measurements. The quantum efficiency (QE), a merit figure for photocathodes, is assessed in the UV spectral range from 146 to 210 nm. The results show an enhancement of the photoemission for PCs based on hydro-, hydro-/nitro- and nitro-genated NDs that exhibit at 146 nm QE values of about 23, 21 and 13 %, respectively. The advantage of nitrogenated PCs is the good stability to air exposure against their lowest QE values

    Monitoring of the primary drying of a lyophilization process in vials

    Get PDF
    An innovative and modular system (LyoMonitor) for monitoring the primary drying of a lyophilization process in vials is illustrated: it integrates some commercial devices (pressure gauges, moisture sensor and mass spectrometer), an innovative balance and a manometric temperature measurement system based on an improved algorithm (DPE) to estimate sublimating interface temperature and position, product temperature profile, heat and mass transfer coefficients. A soft-sensor using a multipoint wireless thermometer can also estimate the previous parameters in a large number of vials. The performances of the previous devices for the determination of the end of the primary drying are compared. Finally, all these sensors can be used for control purposes and for the optimization of the process recipe; the use of DPE in a control loop will be shown as an exampl

    Radiation and magnetic field effects on new semiconductor power devices for HL-LHC experiments

    Full text link
    The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under gamma, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field

    Biomedical prostheses coated by tailored MWPECVD nanocrystalline diamond films

    Get PDF
    Different aspects concerning the use of nanocrystalline diamond (NCD) film, as coating for biomedical prostheses, is discussed. An overview is done on diamond implementation in prostheses, on the NCD mechanical properties and on the technological aspects concerning the NCD growth process i.e. Microwave Plasma Enhanced Chemical Vapor deposition. Then, the attention is focused on a possible improvement of NCD growth on titanium (Ti) substrate. Further, a theoretical study by finite element method is discussed in order to model the adhesion properties of a NCD layer on Ti and Ti/Titanium Carbide (TiC) substrates. The goal of the proposed work is to provide a study about the use of thin NCD coating on Ti based prostheses. The function of the NCD coating on Ti material is to improve the implanted prosthesis with a long duration time, thus decreasing the total costs and the invasive surgery treatments

    Determination of recombination length of a non-equilibrium plasma produced by laser ablation

    Get PDF
    An experimental study of the laser ablation produced plasma evolution is necessary for its deeper understanding, since plasma expansion has both spatially and temporally varying characteristics. We irradiated a Cu target with a KrF laser beam. A small Faraday cup array and an axial Faraday cup were used as diagnostic systems, in order to study the spatial variation in the total charge carried by plasma ions. Charge loss during the plasma expansion was observed, which was attributed to the charged species recombination. This occurred upstream to the critical distance where the plasma density is high enough. Downstream the critical distance the plasma particles collisions were negligible and the ion charge remained frozen. In these experiments it was observed that the critical distance for charge recombination was a function of laser fluence
    corecore