671 research outputs found

    The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity

    Full text link
    A theory for the structure of isothermal, self-gravitating gas spheres in pressure equilibrium in a softened gravitational field is developed. The one parameter spline softening proposed by Hernquist & Katz (1989) is used. We show that the addition of this extra scale parameter implies that the set of equilibrium solutions constitute a one-parameter family, rather than the one and only one isothermal sphere solution for Newtonian gravity. We demonstrate the perhaps somewhat surprising result that for any finite choice of softening length and temperature, it is possible to deposit an arbitrarily large mass of gas in pressure equilibrium and with a non-singular density distribution inside of r_0 for any r_0 > 0. The theoretical predictions of our models are compared with the properties of the small, massive, quasi-isothermal gas clumps which typically form in numerical Tree-SPH simulations of 'passive' galaxy formation of Milky Way sized galaxies. We find reasonable agreement despite the neglect of rotational support in the models. We comment on whether the hydrodynamical resolution in our numerical simulation of galaxy formation is sufficient, and finally we conclude that one should be cautious, when comparing results of numerical simulations involving gravitational softening and hydrodynamical smoothing, with reality.Comment: 22 pages Latex + 12 figure

    Mediterranean Scopelidae (Saurus, Aulopus, Chlorophthalmus and Myctophum)

    Get PDF

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically

    Des modÚles biologiques à l'amélioration des plantes

    Get PDF

    Conservation Laws in Smooth Particle Hydrodynamics: the DEVA Code

    Full text link
    We describe DEVA, a multistep AP3M-like-SPH code particularly designed to study galaxy formation and evolution in connection with the global cosmological model. This code uses a formulation of SPH equations which ensures both energy and entropy conservation by including the so-called \bn h terms. Particular attention has also been paid to angular momentum conservation and to the accuracy of our code. We find that, in order to avoid unphysical solutions, our code requires that cooling processes must be implemented in a non-multistep way. We detail various cosmological simulations which have been performed to test our code and also to study the influence of the \bn h terms. Our results indicate that such correction terms have a non-negligible effect on some cosmological simulations, especially on high density regions associated either to shock fronts or central cores of collapsed objects. Moreover, they suggest that codes paying a particular attention to the implementation of conservation laws of physics at the scales of interest, can attain good accuracy levels in conservation laws with limited computational resources.Comment: 36 pages, 10 figures. Accepted for publication in The Astrophysical Journa

    MCG+00-32-16: An Irregular Galaxy Close to the Lowest Redshift Absorber on the 3C 273 Line of Sight

    Get PDF
    MCG+00-32-16 is the galaxy closest in position-velocity space to the lowest redshift Lyα\alpha absorber along the line-of-sight to the quasar 3C 273. Its projected separation is 204 (d/19 Mpc) kpc, where d is the distance from the Milky Way to the galaxy, and the redshift difference is only 94 km/s; HI 1225+01 is slightly closer in projected separation to the absorber, but has a greater redshift difference. We present HI synthesis array mapping and CCD photometry in B and R for MCG+00-32-16. The HI disk is rotating in such a way that the side of the galaxy closer to the sight-line to the quasar has the larger velocity difference from the absorber. The absorber may be a ``failed dwarf'' member of a poor galaxy group of which MCG+00-32-16 and HI 1225+01 are the only members to have formed stars.Comment: 14 pages, 9 figures, accepted by Astrophysical Journa

    Cosmological SPH simulations with four million particles: statistical properties of X-ray clusters in a low-density universe

    Get PDF
    We present results from a series of cosmological SPH (smoothed particle hydrodynamics) simulations coupled with the P3M (Particle-Particle-Particle-Mesh) solver for the gravitational force. The simulations are designed to predict the statistical properties of X-ray clusters of galaxies as well as to study the formation of galaxies. We have seven simulation runs with different assumptions on the thermal state of the intracluster gas. Following the recent work by Pearce et al., we modify our SPH algorithm so as to phenomenologically incorporate the galaxy formation by decoupling the cooled gas particles from the hot gas particles. All the simulations employ 128^3 particles both for dark matter and for gas components, and thus constitute the largest systematic catalogues of simulated clusters in the SPH method performed so far. These enable us to compare the analytical predictions on statistical properties of X-ray clusters against our direct simulation results in an unbiased manner. We find that the luminosities of the simulated clusters are quite sensitive to the thermal history and also to the numerical resolution of the simulations, and thus are not reliable. On the other hand, the mass-temperature relation for the simulated clusters is fairly insensitive to the assumptions of the thermal state of the intracluster gas, robust against the numerical resolution, and in fact agrees well with the analytic prediction. Therefore the prediction for the X-ray temperature function of clusters on the basis of the Press-Schechter mass function and the virial equilibrium is fairly reliable.Comment: Accepted for publication in The Astrophysical Journal. 18 pages with 7 embedded figure
    • 

    corecore