88 research outputs found

    Natural history and biomarkers of retinal dystrophy caused by the biallelic TULP1 variant c.148delG

    Get PDF
    Purpose To report clinical features and potential disease markers of inherited retinal dystrophy (IRD) caused by the biallelic c.148delG variant in the tubby-like protein 1 (TULP1) gene. Methods A retrospective observational study of 16 IRD patients carrying a homozygous pathogenic TULP1 c.148delG variant. Clinical data including fundus spectral-domain optical coherence tomography (SD-OCT) were assessed. A meta-analysis of visual acuity of previously reported other pathogenic TULP1 variants was performed for reference. Results The biallelic TULP1 variant c.148delG was associated with infantile and early childhood onset IRD. Retinal ophthalmoscopy was primarily normal converting to peripheral pigmentary retinopathy and maculopathy characterized by progressive extra-foveal loss of the ellipsoid zone (EZ), the outer plexiform layer (OPL), and the outer nuclear layer (ONL) bands in the SD-OCT images. The horizontal width of the foveal EZ showed significant regression with the best-corrected visual acuity (BCVA) of the eye (p < 0.0001, R-2 = 0.541, F = 26.0), the age of the patient (p < 0.0001, R-2 = 0.433, F = 16.8), and mild correlation with the foveal OPL-ONL thickness (p = 0.014, R-2 = 0.245, F = 7.2). Modelling of the BCVA data suggested a mean annual loss of logMAR 0.027. The level of visual loss was similar to that previously reported in patients carrying other truncating TULP1 variants. Conclusions This study describes the progression of TULP1 IRD suggesting a potential time window for therapeutic interventions. The width of the foveal EZ and the thickness of the foveal OPL-ONL layers could serve as biomarkers of the disease stage.Peer reviewe

    Optical dipole traps and atomic waveguides based on Bessel light beams

    Full text link
    We theoretically investigate the use of Bessel light beams generated using axicons for creating optical dipole traps for cold atoms and atomic waveguiding. Zeroth-order Bessel beams can be used to produce highly elongated dipole traps allowing for the study of one-dimensional trapped gases and realization of a Tonks gas of impentrable bosons. First-order Bessel beams are shown to be able to produce tight confined atomic waveguides over centimeter distances.Comment: 20 pages, 5 figures, to appear in Phys. Rev.

    Pertinence of salt-related knowledge and reported behaviour on salt intake in adults : a cross-sectional study

    Get PDF
    The association between salt-related knowledge, attitude, behaviour (KAB) and actual salt consumption in Greek adults is uncertain. This study investigates the correlation between salt intake, gauged by 24-h urinary sodium excretion, with salt-related KAB. It further explores how socio-demographic factors influence these behaviors. Salt consumption was evaluated using a 24-h urinary sodium test, and compared to self-reported KAB data. Knowledge and behavior scores related to salt were computed. An overall cohort-adjusted model examined the relationship between daily salt consumption, knowledge and behavior scores, and certain covariates. Through the stratification by the cohort random effect, two models were established (Cohort I Adults; Cohort II Students) examining the same relationships of the overall cohort model. 463 Greek adults participated. The average salt intake was 9.54 g/day, nearly double the WHO recommendation. Significant differences in knowledge scores were noted based on sex, age, education, and BMI. A trend suggesting lower discretionary salt use with increased salt intake was observed (p = 0.06). However, comprehensive analysis revealed no direct correlation between salt intake and either knowledge (p = 0.562) or behavior scores (p = 0.210). The results emphasize the need for food product reforms by industry stakeholders and accelerated efforts towards reducing salt intake

    Tunable beam shaping with a phased array acousto-optic modulator

    Get PDF
    We demonstrate the generation of Bessel beams using an acousto-optic array based on a liquid filled cavity surrounded by a cylindrical multi-element ultrasound transducer array. Conversion of a Gaussian laser mode into a Bessel beam with tunable order and position is shown. Also higher-order Bessel beams up to the fourth order are successfully generated with experimental results very closely matching simulations

    Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms

    Full text link
    [EN] We report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses.This work was supported by the Spanish Ministry of Economy and Innovation (MINECO) through Project TEC2016-80976-R. NJ and SJ acknowledge financial support from Generalitat Valenciana through grants APOSTD/2017/042, ACIF/2017/045 and GV/2018/11. FC acknowledges financial support from Agencia Valenciana de la Innovacio through grant INNCON00/18/9 and European Regional Development Fund (IDIFEDER/2018/022).Jiménez-Gambín, S.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2019). Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms. Scientific Reports. 9:1-13. https://doi.org/10.1038/s41598-019-56369-zS1139Durnin, J. Exact solutions for nondiffracting beams. i. the scalar theory. J. Opt. Soc. Am. A 4, 651 (1987).Durnin, J., Miceli, J. Jr & Eberly, J. Diffraction-free beams. Physical review letters 58, 1499 (1987).Chu, X. Analytical study on the self-healing property of Bessel beam. Eur. Phys. J. D 66, 259 (2012).McLeod, E., Hopkins, A. B. & Arnold, C. B. Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. Opt. Lett. 31, 3155 (2006).Li, Z., Alici, K. B., Caglayan, H. & Ozbay, E. Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture. Phys. Rev. Lett. 102, 143901 (2009).Fahrbach, F. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3, 632 (2011).Lu, J.-y, Zou, H. & Greenleaf, J. F. Biomedical ultrasound beam forming. Ultrasound in medicine & biology 20, 403–428 (1994).Marston, P. L. Scattering of a Bessel beam by a sphere. J. Acous. Soc. Am. 121, 753 (2007).Marston, P. L. Scattering of a Bessel beam by a sphere: Ii. helicoidal case and spherical shell example. The Journal of the Acoustical Society of America 124, 2905–2910 (2008).Lu, J. & Greenleaf, F. Ultrasonic nondiffracting transducer for medical imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 37, 438 (1990).Lu, J.-Y. & Greenleaf, J. F. Pulse-echo imaging using a nondiffracting beam transducer. Ultrasound in medicine & biology 17, 265–281 (1991).Lu, J.-y, Song, T.-K., Kinnick, R. R. & Greenleaf, J. F. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams. IEEE transactions on medical imaging 12, 819–829 (1993).Lu, J.-y, Xu, X.-L., Zou, H. & Greenleaf, J. F. Application of Bessel beam for doppler velocity estimation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 42, 649–662 (1995).Nabavizadeh, A., Greenleaf, J. F., Fatemi, M. & Urban, M. W. Optimized shear wave generation using hybrid beamforming methods. Ultrasound in medicine & biology 40, 188–199 (2014).Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. The Journal of the Acoustical Society of America 120, 3518–3524 (2006).Marston, P. L. Negative axial radiation forces on solid spheres and shells in a Bessel beam. The Journal of the Acoustical Society of America 122, 3162–3165 (2007).Marston, P. L. Radiation force of a helicoidal Bessel beam on a sphere. The Journal of the Acoustical Society of America 125, 3539–3547 (2009).Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Physical review letters 91, 244302 (2003).Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008).Zhang, L. & Marston, P. L. Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres. Physical Review E 84, 035601 (2011).Courtney, C. R. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Applied Physics Letters 102, 123508 (2013).Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).Baresch, D., Thomas, J.-L. &Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers. Phys. Rev. Lett. 116 (2016).Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles. Phys. Rev. Lett. 120, 044301 (2018).Li, Y. et al. Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects. Applied Physics Letters 112, 254101 (2018).Riaud, A., Baudoin, M., Thomas, J.-L. & Matar, O. B. Cyclones and attractive streaming generated by acoustical vortices. Physical Review E 90, 013008 (2014).Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences 114, 7250–7253 (2017).Jiang, X., Liang, B., Cheng, J.-C. & Qiu, C.-W. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Advanced Materials 30, 1800257 (2018).Hsu, D., Margetan, F. & Thompson, D. O. Bessel beam ultrasonic transducer: fabrication method and experimental results. Appl. Phys. Lett. 55, 2066 (1989).Campbell, J. A. & Soloway, S. Generation of a nondiffracting beam with frequency-independent beamwidth. The Journal of the Acoustical Society of America 88, 2467–2477 (1990).Masuyama, H., Yokoyama, T., Nagai, K. & Mizutani, K. Generation of Bessel beam from equiamplitude-driven annular transducer array consisting of a few elements. Jpn. J. Appl. Phys. 38, 3080 (1999).Fjield, T., Fan, X. & Hynynen, K. A parametric study of the concentric-ring transducer design for mri guided ultrasound surgery. J. Acoust. Soc. Am. 100, 1220 (1996).Chillara, V. K., Pantea, C. & Sinha, D. N. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers. Applied Physics Letters 110, 064101 (2017).Burckhardt, C., Hoffmann, H. & Grandchamp, P.-A. Ultrasound axicon: A device for focusing over a large depth. The Journal of the Acoustical Society of America 54, 1628–1630 (1973).Foster, F., Patterson, M., Arditi, M. & Hunt, J. The conical scanner: a two transducer ultrasound scatter imaging technique. Ultrasonic imaging 3, 62–82 (1981).McLeod, J. H. The axicon: A new type of optical element. J. Opt. Soc. Am. 44, 592 (1954).Arlt, J. & Dholakia, K. Generation of high-order Bessel beams by use of an axicon. Optics Communications 177, 297–301 (2000).Golub, I. Fresnel axicon. Optics letters 31, 1890–1892 (2006).Lirette, R. & Mobley, J. Broadband wave packet dynamics of minimally diffractive ultrasonic fields from axicon and stepped fraxicon lenses. The Journal of the Acoustical Society of America 146, 103–108 (2019).Jiménez, N. et al. Acoustic Bessel-like beam formation by an axisymmetric grating. Europhys. Lett. 106, 24005 (2014).Xu, Z., Xu, W., Qian, M., Cheng, Q. & Liu, X. A flat acoustic lens to generate a Bessel-like beam. Ultrasonics 80, 66–71 (2017).Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y. & Cheng, J.-C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports 3, 2546 (2013).Nye, J. & Berry, M. Dislocations in wave trains. Proc. R. Soc. London, Ser. A 336, 165–190 (1974).Jiménez, N. et al. Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Physical Review E 94, 053004 (2016).Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters 109, 123506 (2016).Jia, Y.-R., Wei, Q., Wu, D.-J., Xu, Z. & Liu, X.-J. Generation of fractional acoustic vortex with a discrete archimedean spiral structure plate. Applied Physics Letters 112, 173501 (2018).Jiménez, N., Romero-Garca, V., Garca-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by fresnel-spiral zone plates. Applied Physics Letters 112, 204101 (2018).Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Science advances 5, eaav1967 (2019).Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Acoustic analysis of a broadband spiral source for the simultaneous generation of multiple Bessel vortices in air. The Journal of the Acoustical Society of America 144, 3252–3261 (2018).Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Generation of multiple vortex beam by means of active diffraction gratings. Applied Physics Letters 112, 084101 (2018).Wunenburger, R., Lozano, J. I. V. & Brasselet, E. Acoustic orbital angular momentum transfer to matter by chiral scattering. New Journal of Physics 17, 103022 (2015).Terzi, M., Tsysar, S., Yuldashev, P., Karzova, M. & Sapozhnikov, O. Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness. Moscow University Physics Bulletin 72, 61–67 (2017).Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. Jour. Acous. Soc. Am. 106, 3313–3316 (1999).Ealo, J. L., Prieto, J. C. & Seco, F. Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58, 1651–1657 (2011).Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Applied Physics Letters 108, 223503 (2016).Ye, L. et al. Making sound vortices by metasurfaces. AIP Advances 6, 085007 (2016).Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Physical review letters 117, 034301 (2016).Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Physical Review B 95, 024312 (2017).Jiménez-Gambn, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Physical Review Applied 12, 014016 (2019).Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M. & Aubry, J.-F. 3d-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology 63, 025026 (2018).Ferri, M. et al. On the evaluation of the suitability of the materials used to 3d print holographic acoustic lenses to correct transcranial focused ultrasound aberrations. Polymers 11, 1521 (2019).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518 (2016).Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Applied Physics Letters 111, 244101 (2017).Brown, M., Nikitichev, D., Treeby, B. & Cox, B. Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters 110, 094102 (2017).Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature communications 9, 1632 (2018).Brown, M. D. Phase and amplitude modulation with acoustic holograms. Applied Physics Letters 115, 053701 (2019).Jiménez, N., Romero-Garca, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B 95, 014205 (2017).Tsang, P. W. M. & Poon, T.-C. Novel method for converting digital fresnel hologram to phase-only hologram based on bidirectional error diffusion. Optics Express 21, 23680–23686 (2013).Soret, J. Ueber die durch kreisgitter erzeugten diffractionsphänomene. Annalen der Physik 232, 99–113 (1875).Turunen, J., Vasara, A. & Friberg, A. T. Holographic generation of diffraction-free beams. Applied Optics 27, 3959–3962 (1988).Vasara, A., Turunen, J. & Friberg, A. T. Realization of general nondiffracting beams with computer-generated holograms. JOSA A 6, 1748–1754 (1989).Cunningham, K. B. & Hamilton, M. F. Bessel beams of finite amplitude in absorbing fluids. J. Acous. Soc. Am. 108, 519 (2000).Ding, D. & Y. Lu, J. Higher-order harmonics of limited diffraction Bessel beams. J. Acous. Soc. Am. 107, 1212 (2000).Skeldon, K., Wilson, C., Edgar, M. & Padgett, M. An acoustic spanner and its associated rotational Doppler shift. New J. Phys. 10, 013018 (2008).Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Physical Review E 84, 065601 (2011).Yoon, C., Kang, B. J., Lee, C., Kim, H. H. & Shung, K. K. Multi-particle trapping and manipulation by a high-frequency array transducer. Appl. Phys. Lett. 105, 214103 (2014).Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6 (2015).Blackstock, D. T. Fundamentals of physical acoustics (John Wiley & Sons, 2000).Treeby, B. E. & Cox, B. Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian. The Journal of the Acoustical Society of America 127, 2741–2748 (2010).Treeby, B. E., Jaros, J., Rendell, A. P. & Cox, B. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America 131, 4324–4336 (2012).Jiménez, N. et al. Time-domain simulation of ultrasound propagation in a tissue-like medium based on the resolution of the nonlinear acoustic constitutive relations. Acta Acustica united with Acustica 102, 876–892 (2016)

    Ultrafast laser micro-nano structuring of transparent materials with high aspect ratio

    Full text link
    Ultrafast lasers are ideal tools to process transparent materials because they spatially confine the deposition of laser energy within the material's bulk via nonlinear photoionization processes. Nonlinear propagation and filamentation were initially regarded as deleterious effects. But in the last decade, they turned out to be benefits to control energy deposition over long distances. These effects create very high aspect ratio structures which have found a number of important applications, particularly for glass separation with non-ablative techniques. This chapter reviews the developments of in-volume ultrafast laser processing of transparent materials. We discuss the basic physics of the processes, characterization means, filamentation of Gaussian and Bessel beams and provide an overview of present applications

    Biomechanical considerations in the pathogenesis of osteoarthritis of the knee

    Get PDF
    Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity
    corecore