4,296 research outputs found

    Tidally-driven Roche-Lobe Overflow of Hot Jupiters with MESA

    Get PDF
    Many exoplanets have now been detected in orbits with ultra-short periods, very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly ("stable mass transfer" in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code MESA. We include the effects of tides, RLO, irradiation and photo-evaporation of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have a rocky core and some amount of envelope material, which is slowly removed via photo-evaporation at nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets we also predict an anti-correlation between mass and orbital period; very low-mass planets (Mpl ≲ 5 M⊕M_{\rm pl}\,\lesssim\,5\,M_{\oplus}) in ultra-short periods (PorbP_{\rm orb}<1d) cannot be produced through this type of evolution.Comment: 14 pages, 7 figures, 2 tables. Accepted by ApJ. The manuscript has been revised significantly to address the referee's comments. A link to MESA inlist files is now provided on page

    Order statistics and heavy-tail distributions for planetary perturbations on Oort cloud comets

    Full text link
    This paper tackles important aspects of comets dynamics from a statistical point of view. Existing methodology uses numerical integration for computing planetary perturbations for simulating such dynamics. This operation is highly computational. It is reasonable to wonder whenever statistical simulation of the perturbations can be much more easy to handle. The first step for answering such a question is to provide a statistical study of these perturbations in order to catch their main features. The statistical tools used are order statistics and heavy tail distributions. The study carried out indicated a general pattern exhibited by the perturbations around the orbits of the important planet. These characteristics were validated through statistical testing and a theoretical study based on Opik theory.Comment: 9 pages, 12 figures, submitted for publication in Astronomy and Astrophysic

    The Dynamics of the Multi-planet System Orbiting Kepler-56

    Full text link
    Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity of Kepler-56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. (2013) to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital configuration of the planetary system. We show that even in the presence of precise measurement of the true obliquity, one cannot distinguish the initial configurations. Finally we consider the fate of the system as the star continues to evolve beyond the main sequence, and we find that the obliquity of the system will not undergo major variations as the star climbs the red giant branch. We follow the evolution of the system and find that the innermost planet will be engulfed in ~129 Myr. Furthermore we put an upper limit of ~155 Myr for the engulfment of the second planet. This corresponds to ~ 3% of the current age of the star.Comment: 9 pages, 6 figures. Accepted for publication in Ap

    Selection effects in the discovery of NEAs

    Get PDF
    To highlight discovery selection effects, we consider four NEA subpopulations: (a)"Taurid asteroids", the Apollos with orbits similar to those of 2P/Encke and of the Taurid meteoroid complex;(b)Atens, to which we add the Inner Earth Objects;(c)non-Taurid Apollos;(d)Amors. The "Taurid asteroids" are identified by Asher et al. (1993) with a reduced version of the D-criterion (Southworth and Hawkins 1963), involving only a, e and i: \begin{displaymath} D=\sqrt{\left(\frac{a-2.1}{3}\right)^2+(e-0.82)^2+\left(2\sin{\frac{i-4^\circ}{2}}\right)^2}\leq0.25. \end{displaymath} It turns out that the distribution of the longitudes of perihelion Ď– of NEAs with D<0.25 is significantly non-random, due to the existence of two groups whose apse lines are approximately aligned with those of 2P/Encke and of (2212) Hephaistos
    • …
    corecore