31 research outputs found

    The Interplay Between Collider Searches For Supersymmetric Higgs Bosons and Direct Dark Matter Experiments

    Get PDF
    In this article, we explore the interplay between searches for supersymmetric particles and Higgs bosons at hadron colliders (the Tevatron and the LHC) and direct dark matter searches (such as CDMS, ZEPLIN, XENON, EDELWEISS, CRESST, WARP and others). We focus on collider searches for heavy MSSM Higgs bosons (AA, HH, H±H^{\pm}) and how the prospects for these searches are impacted by direct dark matter limits and vice versa. We find that the prospects of these two experimental programs are highly interrelated. A positive detection of AA, HH or H±H^{\pm} at the Tevatron would dramatically enhance the prospects for a near future direct discovery of neutralino dark matter. Similarly, a positive direct detection of neutralino dark matter would enhance the prospects of discovering heavy MSSM Higgs bosons at the Tevatron or the LHC. Combining the information obtained from both types of experimental searches will enable us to learn more about the nature of supersymmetry.Comment: 22 pages, 28 figure

    Learning from the Scatter in Type Ia Supernovae

    Full text link
    Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional source of scatter is caused by gravitational magnification by large scale structure. Here we probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, \sigma_8, is contained in the scatter. In principle, it will be possible to constrain \sigma_8 to within 5% with observations of 2000 Type Ia Supernovae. However, extracting this information requires subtlety as the distribution of magnifications is far from Gaussian. If one incorrectly assumes a Gaussian distribution, the estimate of the clustering amplitude will be biased three-\sigma away from the true value.Comment: 4 pages, 3 figure

    Exploiting Cross Correlations and Joint Analyses

    Full text link
    In this report, we present a wide variety of ways in which information from multiple probes of dark energy may be combined to obtain additional information not accessible when they are considered separately. Fundamentally, because all major probes are affected by the underlying distribution of matter in the regions studied, there exist covariances between them that can provide information on cosmology. Combining multiple probes allows for more accurate (less contaminated by systematics) and more precise (since there is cosmological information encoded in cross-correlation statistics) measurements of dark energy. The potential of cross-correlation methods is only beginning to be realized. By bringing in information from other wavelengths, the capabilities of the existing probes of dark energy can be enhanced and systematic effects can be mitigated further. We present a mixture of work in progress and suggestions for future scientific efforts. Given the scope of future dark energy experiments, the greatest gains may only be realized with more coordination and cooperation between multiple project teams; we recommend that this interchange should begin sooner, rather than later, to maximize scientific gains.Comment: Report from the "Dark Energy and CMB" working group for the American Physical Society's Division of Particles and Fields long-term planning exercise ("Snowmass"

    Modeling The Large Scale Bias of Neutral Hydrogen

    Full text link
    We present new analytical estimates of the large scale bias of neutral hydrogen (HI). We use a simple, non-parametric model which monotonically relates the total mass of a halo M_tot with its HI mass M_HI at zero redshift; for earlier times we assume limiting models for the HI density evolution consistent with the data presently available, as well as two main scenarios for the evolution of our M_HI - M_tot relation. We find that both the linear and the first nonlinear bias terms exhibit a strong evolution with redshift, regardless of the specific limiting model assumed for the H I density over time. These analytical predictions are then shown to be consistent with measurements performed on the Millennium Simulation. Additionally, we show that this strong bias evolution does not sensibly affect the measurement of the HI power spectrum.Comment: 9 pages, 7 figures. Accepted by ApJ. New version: important changes from considering blue galaxy fraction, but conclusions remain the same. Fixed typo

    The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium

    Full text link
    We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{\nu} = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-alpha forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by sigma_8. If the results of the numerical simulations are normalized to have the same sigma_8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Sigma m_{\nu} = 0.6eV(1.2eV)whencomparedtoasimulationwithoutneutrinos.WepresentconstraintsonneutrinomassesusingtheSloanDigitalSkySurveyfluxpowerspectrumaloneandfindanupperlimitofSigmamν<0.9 eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Sigma m_{\nu} < 0.9 eV (2 sigma C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.Comment: 38 pages, 21 figures. One section and references added. JCAP in pres

    Weak Lensing Effects on the Galaxy Three-Point Correlation Function

    Get PDF
    We study the corrections to the galaxy three-point correlation function (3PCF) induced by weak lensing magnification due to the matter distribution along the line of sight. We consistently derive all the correction terms arising up to second order in perturbation theory and provide analytic expressions as well as order of magnitude estimates for their relative importance. The magnification contributions depend on the geometry of the projected triangle on the sky plane, and scale with different powers of the number count slope and redshift of the galaxy sample considered. We evaluate all terms numerically and show that, depending on the triangle configuration as well as the galaxy sample considered, weak lensing can in general significantly contribute to and alter the three-point correlation function observed through galaxy and quasar catalogs.Comment: 24 pages, 11 figures; version accepted for publication in Phys. Rev. D; v2: typos corrected, figure caption clarifie

    The High Redshift Integrated Sachs-Wolfe Effect

    Full text link
    In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky Survey Data Release Six (SDSS DR6) of about one million photometrically selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high redshift, aiming at constraining the behavior of the expansion rate and thus the behaviour of dark energy at those epochs. This unique sample significantly extends previous catalogs to higher redshifts while retaining high efficiency in the selection algorithm. We compute the auto-correlation function (ACF) of QSO number density from which we extract the bias and the stellar contamination. We then calculate the cross-correlation function (CCF) between QSO number density and Cosmic Microwave Background (CMB) temperature fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and for two different choices of QSO in a conservative and in a more speculative analysis. We find an overall evidence for a cross-correlation different from zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5. We focus on the capabilities of the ISW to constrain the behaviour of the dark energy component at high redshift both in the \LambdaCDM and Early Dark Energy cosmologies, when the dark energy is substantially unconstrained by observations. At present, the inclusion of the ISW data results in a poor improvement compared to the obtained constraints from other cosmological datasets. We study the capabilities of future high-redshift QSO survey and find that the ISW signal can improve the constraints on the most important cosmological parameters derived from Planck CMB data, including the high redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table

    Inflationary attractor in Gauss-Bonnet brane cosmology

    Full text link
    The inflationary attractor properties of the canonical scalar field and Born-Infeld field are investigated in the Randall-Sundrum II scenario with a Gauss-Bonnet term in the bulk action. We find that the inflationary attractor property will always hold for both the canonical and Born-Infeld fields for any allowed non-negative Gauss-Bonnet coupling. We also briefly discuss the possibility of explaining the suppressed lower multiples and running scalar spectral index simultaneously in the scenario of Gauss-Bonnet brane inflation.Comment: 7 pages, no figures. An error in the discussion of BI field corrected, conclusion correcte

    Size magnification as a complement to Cosmic Shear

    Get PDF
    We investigate the extent to which cosmic size magnification may be used to com- plement cosmic shear in weak gravitational lensing surveys, with a view to obtaining high-precision estimates of cosmological parameters. Using simulated galaxy images, we find that size estimation can be an excellent complement, finding that unbiased estimation of the convergence field is possible with galaxies with angular sizes larger than the point-spread function (PSF) and signal-to-noise ratio in excess of 10. The statistical power is similar to, but not quite as good as, cosmic shear, and it is subject to different systematic effects. Application to ground-based data will be challeng- ing, with relatively large empirical corrections required to account for with biases for galaxies which are smaller than the PSF, but for space-based data with 0.1 arcsecond resolution, the size distribution of galaxies brighter than i=24 is ideal for accurate estimation of cosmic size magnification.Comment: 11 pages, 11 figures, accepted by MNRA

    A Measurement of the Correlation of Galaxy Surveys with CMB Lensing Convergence Maps from the South Pole Telescope

    Get PDF
    We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg^2 of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4σ, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg^2 SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe
    corecore