7,974 research outputs found
Nature of non-magnetic strongly-correlated state in delta-plutonium
Ab-initio relativistic dynamical mean-field theory is applied to resolve the
long-standing controversy between theory and experiment in the "simple"
face-centered cubic phase of plutonium called delta-Pu. In agreement with
experiment, neither static nor dynamical magnetic moments are predicted. In
addition, the quasiparticle density of states reproduces not only the peak
close to the Fermi level, which explains the large coefficient of electronic
specific heat, but also main 5f features observed in photoelectron
spectroscopy.Comment: 9 pages, 3 figure
Robust formation of morphogen gradients
We discuss the formation of graded morphogen profiles in a cell layer by
nonlinear transport phenomena, important for patterning developing organisms.
We focus on a process termed transcytosis, where morphogen transport results
from binding of ligands to receptors on the cell surface, incorporation into
the cell and subsequent externalization. Starting from a microscopic model, we
derive effective transport equations. We show that, in contrast to morphogen
transport by extracellular diffusion, transcytosis leads to robust ligand
profiles which are insensitive to the rate of ligand production
Structure, Deformations and Gravitational Wave Emission of Magnetars
Neutron stars can have, in some phases of their life, extremely strong
magnetic fields, up to 10^15-10^16 G. These objects, named magnetars, could be
powerful sources of gravitational waves, since their magnetic field could
determine large deformations. We discuss the structure of the magnetic field of
magnetars, and the deformation induced by this field. Finally, we discuss the
perspective of detection of the gravitational waves emitted by these stars.Comment: 11 pages, 2 figures, prepared for 19th International Conference on
General Relativity and Gravitation (GR19), Mexico City, Mexico, July 5-9,
201
Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source
This paper deals with the long-time behavior of solutions of nonlinear
reaction-diffusion equations describing formation of morphogen gradients, the
concentration fields of molecules acting as spatial regulators of cell
differentiation in developing tissues. For the considered class of models, we
establish existence of a new type of ultra-singular self-similar solutions.
These solutions arise as limits of the solutions of the initial value problem
with zero initial data and infinitely strong source at the boundary. We prove
existence and uniqueness of such solutions in the suitable weighted energy
spaces. Moreover, we prove that the obtained self-similar solutions are the
long-time limits of the solutions of the initial value problem with zero
initial data and a time-independent boundary source
Statistics of selectively neutral genetic variation
Random models of evolution are instrumental in extracting rates of
microscopic evolutionary mechanisms from empirical observations on genetic
variation in genome sequences. In this context it is necessary to know the
statistical properties of empirical observables (such as the local homozygosity
for instance). Previous work relies on numerical results or assumes Gaussian
approximations for the corresponding distributions. In this paper we give an
analytical derivation of the statistical properties of the local homozygosity
and other empirical observables assuming selective neutrality. We find that
such distributions can be very non-Gaussian.Comment: 4 pages, 4 figure
Resisting whiteness: anti-racist leadership and professional learning in majority White senior leadership teams in English schools
Many Senior Leadership Teams (SLTs) are engaging in professional development to nurture explicitly anti-racist practice. Teachers' knowledge gaps about racism, its traumatic, lasting impact and how racism is generated through schooling persist within a cloak of silence. This small-scale study explores interview data from senior leaders in English schools, questioning legacies of colour-evasion and breaking silences to understand the role ‘race’ plays in their schools, appearing exigent due to Black Lives Matter (BLM) movements and the inescapable reality of racism seen in George Floyd's horrific murder. Using Critical Race Theory (CRT) and Critical Whiteness Studies (CWS) as theoretical tools, we explore negotiations and challenges of leading anti-racist work in systems favouring whiteness as the norm. Findings show senior leaders undertaking the Anti-Racist School Award (ARSA) and/or Race, Identity and School Leadership (RISL) programme are novice ‘race’ practitioners, despite their seniority, wrestling to recognise whiteness and to connect their own ‘race’(d) identities to role-enactment and policy. They must negotiate and make the case for anti-racist leadership to colleagues trained not to notice, and mitigate wider external systems operationalising whiteness, blocking the development of anti-racist practice. We examine resistances to anti-racist work in English school systems that (re)centre whiteness
The Nondeterministic Waiting Time Algorithm: A Review
We present briefly the Nondeterministic Waiting Time algorithm. Our technique
for the simulation of biochemical reaction networks has the ability to mimic
the Gillespie Algorithm for some networks and solutions to ordinary
differential equations for other networks, depending on the rules of the
system, the kinetic rates and numbers of molecules. We provide a full
description of the algorithm as well as specifics on its implementation. Some
results for two well-known models are reported. We have used the algorithm to
explore Fas-mediated apoptosis models in cancerous and HIV-1 infected T cells
Magnetic state of plutonium ion in metallic Pu and its compounds
By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and
electronic structure have been investigated for plutonium in \delta and \alpha
phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For
metallic plutonium in both phases in agreement with experiment a nonmagnetic
ground state was found with Pu ions in f^6 configuration with zero values of
spin, orbital, and total moments. This result is determined by a strong
spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced
splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a
pseudogap between them, so that f^{5/2} subshell is already nearly completely
filled with six electrons before Coulomb correlation effects were taken into
account. The competition between spin-orbit coupling and exchange (Hund)
interaction (favoring magnetic ground state) in 5f shell is so delicately
balanced, that a small increase (less than 15%) of exchange interaction
parameter value from J_H=0.48eV obtained in constrain LDA calculation would
result in a magnetic ground state with nonzero spin and orbital moment values.
For Pu compounds investigated in the present work, predominantly f^6
configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and
PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic
moment values. Whereas pure jj coupling scheme was found to be valid for
metallic plutonium, intermediate coupling scheme is needed to describe 5f shell
in Pu compounds. The results of our calculations show that both spin-orbit
coupling and exchange interaction terms in the Hamiltonian must be treated in a
general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape
- …