605 research outputs found

    Is current disruption associated with an inverse cascade?

    Full text link
    Current disruption (CD) and the related kinetic instabilities in the near-Earth magnetosphere represent physical mechanisms which can trigger multi-scale substorm activity including global reorganizations of the magnetosphere. Lui et al. (2008) proposed a CD scenario in which the kinetic scale linear modes grow and reach the typical dipolarization scales through an inverse cascade. The experimental verification of the inverse nonlinear cascade is based on wavelet analysis. In this paper the Hilbert-Huang transform is used which is suitable for nonlinear systems and allows to reconstruct the time-frequency representation of empirical decomposed modes in an adaptive manner. It was found that, in the Lui et al. (2008) event, the modes evolve globally from high-frequencies to low-frequencies. However, there are also local frequency evolution trends oriented towards high-frequencies, indicating that the underlying processes involve multi-scale physics and non-stationary fluctuations for which the simple inverse cascade scenario is not correct.Comment: 6 pages, 4 figure

    Wavelet analysis of magnetic turbulence in the Earth's plasma sheet

    Full text link
    Recent studies provide evidence for the multi-scale nature of magnetic turbulence in the plasma sheet. Wavelet methods represent modern time series analysis techniques suitable for the description of statistical characteristics of multi-scale turbulence. Cluster FGM (fluxgate magnetometer) magnetic field high-resolution (~67 Hz) measurements are studied during an interval in which the spacecraft are in the plasma sheet. As Cluster passes through different plasma regions, physical processes exhibit non-steady properties on magnetohydrodynamic (MHD) and small, possibly kinetic scales. As a consequence, the implementation of wavelet-based techniques becomes complicated due to the statistically transitory properties of magnetic fluctuations and finite size effects. Using a supervised multi-scale technique which allows existence test of moments, the robustness of higher-order statistics is investigated. On this basis the properties of magnetic turbulence are investigated for changing thickness of the plasma sheet.Comment: 17 pages, 5 figure

    Multi-dimensional laser spectroscopy of exciton-polaritons with spatial light modulators

    Full text link
    We describe an experimental system that allows one to easily access the dispersion curve of exciton-polaritons in a microcavity. Our approach is based on two spatial light modulators (SLM), one for changing the excitation angles (momenta), and the other for tuning the excitation wavelength. We show that with this setup, an arbitrary number of states can be excited accurately and that re-configuration of the excitation scheme can be done at high speed.Comment: 4 pages, 5 figure

    Study of reconnection-associated multi-scale fluctuations with Cluster and Double Star

    Full text link
    The objective of the paper is to asses the specific spectral scaling properties of magnetic reconnection associated fluctuations/turbulence at the Earthward and tailward outflow regions observed simultaneously by the Cluster and Double Star (TC-2) spacecraft on September 26, 2005. Systematic comparisons of spectral characteristics, including variance anisotropy and scale-dependent spectral anisotropy features in wave vector space were possible due to the well-documented reconnection events, occurring between the positions of Cluster (X = -14--16 ReR_e) and TC-2 (X = -6.6 ReR_e). Another factor of key importance is that the magnetometers on the spacecraft are similar. The comparisons provide further evidence for asymmetry of physical processes in Earthward/tailward reconnection outflow regions. Variance anisotropy and spectral anisotropy angles estimated from the multi-scale magnetic fluctuations in the tailward outflow region show features which are characteristic for magnetohydrodynamic cascading turbulence in the presence of a local mean magnetic field. The multi-scale magnetic fluctuations in the Earthward outflow region are exhibiting more power, lack of variance and scale dependent anisotropies, but also having larger anisotropy angles. In this region the magnetic field is more dipolar, the main processes driving turbulence are flow breaking/mixing, perhaps combined with turbulence ageing and non-cascade related multi-scale energy sources.Comment: 30 pages, 6 figure

    The mechanism and kinetics of void formation and growth in particulate filled PE composites

    Get PDF
    Volume strain measurements were carried out on PE/CaCO3 composites prepared with three different matrix polymers, containing various amounts of filler. The analysis of the debonding process and the various stages of void formation proved that the model developed for the prediction of the initiation of debonding is valid also for the studied PE/CaCO3 composites. Debonding stress is determined by the strength of interfacial adhesion, particle size and the stiffness of the matrix. In thermoplastic matrices usually two competitive processes take place: debonding and the plastic deformation of the polymer. The relative magnitude of the two processes strongly influences the number and size of the voids formed. Because of this competition and due to the wide particle size distribution of commercial fillers, only a certain fraction of the particles initiate the formation of voids. The number of voids formed is inversely proportional to the stiffness of the matrix polymer. In stiff matrices almost the entire amount of filler separates from the matrix under the effect of external load, while less than 30% debond in a PE which has an initial modulus of 0.4 GPa. Further decrease of matrix stiffness may lead to the complete absence of debonding and the composite would deform exclusively by shear yielding. Voids initiated by debonding grow during the further deformation of the composite. The size of the voids also depends on the modulus of the matrix. The rate of volume increase considerably exceeds the value predicted for cross-linked rubbers. At the same deformation and filler content the number of voids is smaller and their size is larger in soft matrices than in polymers with larger inherent modulus
    • …
    corecore