61 research outputs found
Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge
Coral reefs are under threat, exerted by a number of interacting effects inherent to the present climate change, including ocean acidification and global warming. Bioerosion drives reef degradation by recycling carbonate skeletal material and is an important but understudied factor in this context. Twelve different combinations of pCO2 and temperature were applied to elucidate the consequences of ocean acidification and global warming on the physiological response and bioerosion rates of the zooxanthellate sponge Cliona orientalis—one of the most abundant and effective bioeroders on the Great Barrier Reef, Australia. Our results confirm a significant amplification of the sponges’ bioerosion capacity with increasing pCO2, which is expressed by more carbonate being chemically dissolved by etching. The health of the sponges and their photosymbionts was not affected by changes in pCO2, in contrast to temperature, which had significant negative impacts at higher levels. However, we could not conclusively explain the relationship between temperature and bioerosion rates, which were slightly reduced at both colder as well as warmer temperatures than ambient. The present findings on the effects of ocean acidification on chemical bioerosion, however, will have significant implications for predicting future reef carbonate budgets, as sponges often contribute the lion’s share of internal bioerosion on coral reefs
Ward Identities, B-> \rho Form Factors and |V_ub|
The exclusive FCNC beauty semileptonic decay B-> \rho is studied using Ward
identities in a general vector meson dominance framework, predicting vector
meson couplings involved. The long distance contributions are discussed which
results to obtain form factors and |V_ub|. A detailed comparison is given with
other approaches.Comment: 30 pages+four postscript figures, an Appendix adde
The XENONnT dark matter experiment
The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run
The XENONnT Dark Matter Experiment
The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso
aims to detect dark matter with two-phase liquid xenon time projection chambers
of increasing size and sensitivity. The XENONnT experiment is the latest
detector in the program, planned to be an upgrade of its predecessor XENON1T.
It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5
tonnes total mass in cryostat). The experiment is expected to extend the
sensitivity to WIMP dark matter by more than an order of magnitude compared to
XENON1T, thanks to the larger active mass and the significantly reduced
background, improved by novel systems such as a radon removal plant and a
neutron veto. This article describes the XENONnT experiment and its sub-systems
in detail and reports on the detector performance during the first science run.Comment: 32 pages, 19 figure
- …