1,492 research outputs found

    Food waste materials appear efficient and low-cost adsorbents for the removal of organic and inorganic pollutants from wastewater

    Get PDF
    In recent studies, the adsorption capacity of several food waste materials has been assessed by performing adsorption experiments in heterogeneous operating conditions. In a latest study, the efficiency of such food waste materials for the removal of metals and metalloids from complex multi-element solutions was evaluated in homogeneous experimental conditions, which allowed comparing the adsorption capacities of the individual adsorbents. Considering the high efficiency of the examined low-cost adsorbents for the removal of inorganic pollutants, preliminary studies were conducted in our lab for assessing the potential of the investigated food waste materials to adsorb volatile organic compounds from a real polluted matrix of leachate. Some recent studies have shown the efficiency of low cost materials for the removal of industrial organic dyes, polycyclic aromatic hydrocarbons and phenolic compounds. However, the food waste adsorbents’ efficiency for the removal of volatile organic compounds was not investigated. Our preliminary studies showed good adsorption capacities of the examined food waste materials for aliphatic and aromatic hydrocarbons. Therefore, it is worth to carry out further studies about volatile organic compounds’ removal by food waste adsorbents

    Adaptive Dispersion Compensation for Remote Fiber Delivery of NIR Femtosecond Pulses

    Full text link
    We report on remote delivery of 25 pJ broadband near-infrared femtosecond light pulses from a Ti:sapphire laser through 150 meters of single-mode optical fiber. Pulse distortion due to dispersion is overcome with pre-compensation using adaptive pulse shaping techniques, while nonlinearities are mitigated using an SF10 rod for the final stage of pulse compression. Near transform limited pulse duration of 130 fs is measured after the final compression.Comment: 3 pages, 4 figure

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes

    Full text link
    We report the observation of thermally driven mechanical vibrations of suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition (CVD). Several experimental procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in images taken with a scanning electron microscope. The measured vibration amplitudes are compared with a model based on linear continuum mechanics.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd

    On the modulation instability development in optical fiber systems

    Full text link
    Extensive numerical simulations were performed to investigate all stages of modulation instability development from the initial pulse of pico-second duration in photonic crystal fiber: quasi-solitons and dispersive waves formation, their interaction stage and the further propagation. Comparison between 4 different NLS-like systems was made: the classical NLS equation, NLS system plus higher dispersion terms, NLS plus higher dispersion and self-steepening and also fully generalized NLS equation with Raman scattering taken into account. For the latter case a mechanism of energy transfer from smaller quasi-solitons to the bigger ones is proposed to explain the dramatical increase of rogue waves appearance frequency in comparison to the systems when the Raman scattering is not taken into account.Comment: 9 pages, 54 figure

    Electromechanical instability in suspended carbon nanotubes

    Full text link
    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system

    Extinctions and Correlations for Uniformly Discrete Point Processes with Pure Point Dynamical Spectra

    Full text link
    The paper investigates how correlations can completely specify a uniformly discrete point process. The setting is that of uniformly discrete point sets in real space for which the corresponding dynamical hull is ergodic. The first result is that all of the essential physical information in such a system is derivable from its nn-point correlations, n=2,3,>...n= 2, 3, >.... If the system is pure point diffractive an upper bound on the number of correlations required can be derived from the cycle structure of a graph formed from the dynamical and Bragg spectra. In particular, if the diffraction has no extinctions, then the 2 and 3 point correlations contain all the relevant information.Comment: 16 page
    • …
    corecore