The paper investigates how correlations can completely specify a uniformly
discrete point process. The setting is that of uniformly discrete point sets in
real space for which the corresponding dynamical hull is ergodic. The first
result is that all of the essential physical information in such a system is
derivable from its n-point correlations, n=2,3,>.... If the system is
pure point diffractive an upper bound on the number of correlations required
can be derived from the cycle structure of a graph formed from the dynamical
and Bragg spectra. In particular, if the diffraction has no extinctions, then
the 2 and 3 point correlations contain all the relevant information.Comment: 16 page