572 research outputs found

    Serum procalcitonin for discrimination of blood contamination from bloodstream infection due to coagulase-negative staphylococci

    Get PDF
    The diagnostic value of serum procalcitonin (PCT) to distinguish blood contamination from bloodstream infection (BSI) due to coagulase-negative staphylococci was evaluated. Patients with BSI had higher PCT concentration than those with blood contamination at day -1, day 0 and day +1 with regard to blood culture collection (p > 0.05), whereas serum C-reactive protein values were significantly higher only on day +1. At a cutoff of 0.1 ng/dl, PCT had a sensitivity of 86% and 100%, and a specificity of 60% and 80% for the diagnosis of BSI on day -1 and 0, respectively. In addition to clinical and microbiological parameters, PCT may help discriminating blood contamination from BSI due coagulase-negative staphylococci

    Serum Procalcitonin for Discrimination of Blood Contamination from Bloodstream Infection due to Coagulase-Negative Staphylococci

    Get PDF
    Abstract : The diagnostic value of serum procalcitonin (PCT) to distinguish blood contamination from bloodstream infection (BSI) due to coagulase-negative staphylococci was evaluated. Patients with BSI had higher PCT concentration than those with blood contamination at day -1, day 0 and day +1 with regard to blood culture collection (p < 0.05), whereas serum C-reactive protein values were significantly higher only on day +1. At a cutoff of 0.1 ng/dl, PCT had a sensitivity of 86% and 100%, and a specificity of 60% and 80% for the diagnosis of BSI on day -1 and 0, respectively. In addition to clinical and microbiological parameters, PCT may help discriminating blood contamination from BSI due coagulase-negative staphylococc

    Sonication of Removed Breast Implants for Improved Detection of Subclinical Infection

    Get PDF
    Background: Capsular fibrosis is a severe complication after breast implantation with an uncertain etiology. Microbial colonization of the prosthesis is hypothesized as a possible reason for the low-grade infection and subsequent capsular fibrosis. Current diagnostic tests consist of intraoperative swabs and tissue biopsies. Sonication of removed implants may improve the diagnosis of implant infection by detachment of biofilms from the implant surface. Methods: Breast implants removed from patients with Baker grades 3 and 4 capsular contracture were analyzed by sonication, and the resulting sonication fluid was quantitatively cultured. Results: This study investigated 22 breast implants (6 implants with Baker 3 and 16 implants with Baker 4 capsular fibrosis) from 13 patients. The mean age of the patients was 49years (range, 31-76years). The mean implant indwelling time was 10.4years (range, 3months to 30years). Of the 22 implants, 12 were used for breast reconstruction and 10 for aesthetic procedures. The implants were located subglandularly (n=12), submuscularly (n=6), and subcutaneously (n=4). Coagulase-negative staphylococci, Propionibacterium acnes, or both were detected in the sonication fluid cultures of nine implants (41%), eight of which grew significant numbers of microorganisms (>100 colonies/ml of sonication fluid). Conclusions: Sonication detected bacteria in 41% of removed breast implants. The identified bacteria belonged to normal skin flora. Further investigation is needed to determine any causal relation between biofilms and capsular fibrosi

    Successful treatment of periprosthetic joint infection caused by Granulicatella para-adiacens with prosthesis retention: a case report.

    Get PDF
    Granulicatella and Abiotrophia spp. are difficult to detect due to their complex nutritional requirements. Infections with these organisms are associated with high treatment failure rates. We report the first implant-associated infection caused by Granulicatella para-adiacens, which was cured with anti-microbial treatment consisting of anti-biofilm-active rifampin and debridement, exchange of mobile parts and retention of the prosthesis. Patient with a history of left hip arthroplasty presented with acute onset of fever, pain and limited range of motion of the left hip. Arthrocentesis of the affected joint yielded purulent fluid and exchange of mobile parts of the prosthesis, but retention of fixed components was performed. Granulicatella para-adiacens grew from preoperative and intraoperative cultures, including sonication fluid of the removed implant. The transesophageal echocardiography showed a vegetation on the mitral valve; the orthopantogram demonstrated a periapical dental abscess. The patient was treated with intravenous penicillin G and gentamicin for 4 weeks, followed by levofloxacin and rifampin for additional 2 months. At discharge and at follow-up 1, 2 and 5 years later, the patient was noted to have a functional, pain-free, and radiologically stable hip prosthesis and the serum C-reactive protein was normal. Although considered a difficult-to-treat organism, we report a successful treatment of the Granulicatella hip prosthesis infection with prosthesis retention and a prolonged antibiofilm therapy including rifampin. The periapical dental abscess is considered the primary focus of hematogenously infected hip prosthesis, underlining the importance treatment of periodontitis prior to arthroplasty and of proper oral hygiene for prevention of hematogenous infection after arthroplasty

    Excellent diagnostic characteristics for ultrafast gene profiling of DEFA1-IL1B-LTF in detection of prosthetic joint infections

    Get PDF
    The timely and exact diagnosis of prosthetic joint infection (PJI) is crucial for surgical decision-making. Intraoperatively, delivery of the result within an hour is required. Alpha-defensin lateral immunoassay of joint fluid (JF) is precise for the intraoperative exclusion of PJI; however, for patients with a limited amount of JF and/or in cases where the JF is bloody, this test is unhelpful. Important information is hidden in periprosthetic tissues that may much better reflect the current status of implant pathology. We therefore investigated the utility of the gene expression patterns of 12 candidate genes (TLR1, -2, -4, -6, and 10, DEFA1, LTF, IL1B, BPI, CRP, IFNG, and DEFB4A) previously associated with infection for detection of PJI in periprosthetic tissues of patients with total joint arthroplasty (TJA) (n = 76) reoperated for PJI (n = 38) or aseptic failure (n = 38), using the ultrafast quantitative reverse transcription-PCR (RT-PCR) Xxpress system (BJS Biotechnologies Ltd.). Advanced data-mining algorithms were applied for data analysis. For PJI, we detected elevated mRNA expression levels of DEFA1 (P < 0.0001), IL1B (P < 0.0001), LTF (P < 0.0001), TLR1 (P = 0.02), and BPI (P = 0.01) in comparison to those in tissues from aseptic cases. A feature selection algorithm revealed that the DEFA1-IL1B-LTF pattern was the most appropriate for detection/exclusion of PJI, achieving 94.5% sensitivity and 95.7% specificity, with likelihood ratios (LRs) for positive and negative results of 16.3 and 0.06, respectively. Taken together, the results show that DEFA1-IL1B-LTF gene expression detection by use of ultrafast qRT-PCR linked to an electronic calculator allows detection of patients with a high probability of PJI within 45 min after sampling. Further testing on a larger cohort of patients is needed.Web of Science5592697268

    The potential use of microcalorimetry in rapid differentiation between septic arthritis and other causes of arthritis.

    Get PDF
    Current diagnostic methods in differentiating septic from non-septic arthritis are time-consuming (culture) or have limited sensitivity (Gram stain). Microcalorimetry is a novel method that can rapidly detect microorganisms by their heat production. We investigated the accuracy and time to detection of septic arthritis by using microcalorimetry. Patients older than 18 years of age with acute arthritis of native joints were prospectively included. Synovial fluid was aspirated and investigated by Gram stain, culture and microcalorimetry. The diagnosis of septic arthritis and non-septic arthritis were made by experienced rheumatologists or orthopaedic surgeons. Septic arthritis was diagnosed by considering the finding of acute arthritis together with findings such as positive Gram stain or positive culture of synovial fluid or positive blood culture. The sensitivity and specificity for diagnosing septic arthritis and the time to positivity of microcalorimetry were determined. Of 90 patients (mean age 64 years), nine had septic arthritis, of whom four (44 %) had positive Gram stain, six (67 %) positive synovial fluid culture and four (44 %) had positive blood culture. The sensitivity of microcalorimetry was 89 %, the specificity was 99 % and the mean detection time was 5.0 h (range, 2.2-8.0 h). Microcalorimetry is an accurate and rapid method for the diagnosis of septic arthritis. It has potential to be used in clinical practice in diagnosing septic arthritis

    Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis.

    Get PDF
    Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with β-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts

    Joint EANM/ESNR and ESCMID-endorsed consensus document for the diagnosis of spine infection (spondylodiscitis) in adults

    Get PDF
    Purpose: Diagnosis of spondylodiscitis (SD) may be challenging due to the nonspecific clinical and laboratory findings and the need to perform various diagnostic tests including serologic, imaging, and microbiological examinations. Homogeneous management of SD diagnosis through international, multidisciplinary guidance would improve the sensitivity of diagnosis and lead to better patient outcome. Methods: An expert specialist team, comprising nuclear medicine physicians appointed by the European Association of Nuclear Medicine (EANM), neuroradiologists appointed by the European Society of Neuroradiology (ESNR), and infectious diseases specialists appointed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), reviewed the literature from January 2006 to December 2015 and proposed 20 consensus statements in answer to clinical questions regarding SD diagnosis. The statements were graded by level of evidence level according to the 2011 Oxford Centre for Evidence-based Medicine criteria and included in this consensus document for the diagnosis of SD in adults. The consensus statements are the result of literature review according to PICO (P:population/patients, I:intervention/indicator, C:comparator/control, O:outcome) criteria. Evidence-based recommendations on the management of adult patients with SD, with particular attention to radiologic and nuclear medicine diagnosis, were proposed after a systematic review of the literature in the areas of nuclear medicine, radiology, infectious diseases, and microbiology. Results: A diagnostic flow chart was developed based on the 20 consensus statements, scored by level of evidence according to the Oxford Centre for Evidence-based Medicine criteria. Conclusions: This consensus document was developed with a final diagnostic flow chart for SD diagnosis as an aid for professionals in many fields, especially nuclear medicine physicians, radiologists, and orthopaedic and infectious diseases specialists
    corecore