134 research outputs found

    Spin filters with Fano dots

    Get PDF
    We compute the zero bias conductance of electrons through a single ballistic channel weakly coupled to a side quantum dot with Coulomb interaction. In contrast to the standard setup which is designed to measure the transport through the dot, the channel conductance reveals Coulomb blockade dips rather then peaks due to the Fano-like backscattering. At zero temperature the Kondo effect leads to the formation of broad valleys of small conductance corresponding to an odd number of electrons on the dot. By applying a magnetic field in the dot region we find two dips corresponding to a total suppression in the conductance of spins up and down separated by an energy of the order of the Coulomb interaction. This provides a possibility of a perfect spin filter.Comment: 5 pages, 4 figures, to be published in European Physical Journal

    Anderson impurity in the one-dimensional Hubbard model on finite size systems

    Full text link
    An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-filling affects the Kondo resonance in the limit of Hubbard repulsion U=0. In general, a weak dependence with the electron density was found for the local density of states (LDOS) at the impurity except when the impurity, at half-filling, is close to a mixed valence regime. Next, in the central part of this paper, we studied the effects of finite Hubbard interaction on the chain at quarter-filling. Our main result is that this interaction drives the impurity into a more defined Kondo regime although accompanied in most cases by a reduction of the spectral weight of the impurity LDOS. Again, for the impurity in the mixed valence regime, we observed an interesting nonmonotonic behavior. We also concluded that the conductance, computed for a small finite bias applied to the leads, follows the behavior of the impurity LDOS, as in the case of non-interacting chains. Finally, we analyzed how the Hubbard interaction and the finite chain length affect the spin compensation cloud both at zero and at finite temperature, in this case using quantum Monte Carlo techniques.Comment: 9 pages, 9 figures, final version to be published in Phys. Rev.

    Conductance through an array of quantum dots

    Full text link
    We propose a simple approach to study the conductance through an array of NN interacting quantum dots, weakly coupled to metallic leads. Using a mapping to an effective site which describes the low-lying excitations and a slave-boson representation in the saddle-point approximation, we calculated the conductance through the system. Explicit results are presented for N=1 and N=3: a linear array and an isosceles triangle. For N=1 in the Kondo limit, the results are in very good agreement with previous results obtained with numerical renormalization group (NRG). In the case of the linear trimer for odd NN, when the parameters are such that electron-hole symmetry is induced, we obtain perfect conductance G0=2e2/hG_0=2e^2/h. The validity of the approach is discussed in detail.Comment: to appear in Phys. Rev.

    Quantum dot with ferromagnetic leads: a density-matrix renormalization group study

    Full text link
    A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is shown that this local density of states is suppressed by the parallel polarization of the leads. In this case we are able to estimate the length of the Kondo cloud, and to relate its behavior to that suppression. Another important result of our study is that the tunnel magnetoresistance as a function of the quantum dot on-site energy is minimum and negative at the symmetric point.Comment: 4 pages including 5 figures. To be published as a Brief Report in Phys. Rev.

    Fine structure of the local pseudogap and Fano effect for superconducting electrons near a zigzag graphene edge

    Full text link
    Motivated by recent scanning tunneling experiments on zigzag-terminated graphene this paper investigates an interplay of evanescent and extended quasiparticle states in the local density of states (LDOS) near a zigzag edge using the Green's function of the Dirac equation. A model system is considered where the local electronic structure near the edge influences transport of both normal and superconducting electrons via a Fano resonance. In particular, the temperature enhancement of the critical Josephson current and 0-pi transitions are predicted.Comment: 5 pages, 5 figures, to be published in Phys. Rev.

    Two-state behaviour of Kondo trimers

    Get PDF
    The electronic properties and spectroscopic features of a magnetic trimer with a Kondo-like coupling to a non-magnetic metallic substrate are analyzed at zero temperature. The substrate density of states is depressed in the trimer neighbourhood, being exactly zero at the substrate chemical potential. The size of the resonance strongly depends on the magnetic state of the trimer, and exhibits a two-state behavior. The geometrical dependence of these results agree qualitatively with recent experiments and could be reproduced in a triangular quantum dot arrangement.Comment: 5 pages, including 4 figure

    Breakdown of Luttinger's theorem in two-orbital Mott insulators

    Full text link
    An analysis of Luttinger's theorem shows that -- contrary to recent claims -- it is not valid for a generic Mott insulator. For a two-orbital Hubbard model with two electrons per site the crossover from a non-magnetic correlated insulating phase (Mott or Kondo insulator) to a band insulator is investigated. Mott insulating phases are characterized by poles of the self-energy and corresponding zeros in the Greens functions defining a ``Luttinger surface'' which is absent for band insulators. Nevertheless, the ground states of such insulators with two electrons per unit cell are adiabatically connected.Comment: published version, some formulations change

    Phase diagram of the Hubbard chain with two atoms per cell

    Full text link
    We obtain the quantum phase diagram of the Hubbard chain with alternating on-site energy at half filling. The model is relevant for the ferroelectric perovskites and organic mixed-stack donor-acceptor crystals. For any values of the parameters, the band insulator is separated from the Mott insulator by a dimer phase. The boundaries are determined accurately by crossing of excited levels with particular discrete symmetries. We show that these crossings coincide with jumps of charge and spin Berry phases with a clear geometrical meaning.Comment: 5 pages including 2 figures To be published in Phys. Rev. B (Rapid Communications
    corecore