4,233 research outputs found
A framework for assessing crop production from rotations
This report was presented at the UK Organic Research 2002 Conference of the Colloquium of Organic Researchers (COR).
Organic farming systems rely on the management of biological cycles for the provision of nutrients, which are crucial to maximising the production from the system. Rotations based on the use of grass-legume leys are central to the concept of organic farming systems, because they have the potential to support both animal production, and a subsequent, exploitative, arable cropping phase. A major challenge in organic farming is managing the supply of nitrogen, since it has a key role in governing both productivity and environmental impact. Hence, within a rotational system, there is a need to understand the complex interactions that are occurring between crop species and management, livestock production system and the impact of soil and climate on these processes. To understand these interactions, a framework is being developed for rotational farming systems that describes the soil nitrogen, crop growth and livestock production. The framework must address questions that are relevant to researchers and extensions workers. Typical questions relate to the management of nutrients in the short and long-term. Additionally, there are concerns over the impact of weeds, pests and diseases on productivity, as well as the impact of adopting new strategies or crops on the farming system
Indicator systems - resource use in organic systems
A balanced use of resources within organic farming systems is required to maintain sustainable systems. Hence, it is essential to have tools that can assess the use of resources within the farming system and their impact on the environment. The range of tools that have been developed include those assessing local farm-scale issues together with those that assess impacts at the global scale. At the global scale assessments are usually made on the basis of a unit of product whereas at the local scale assessments can also be made on an area basis. In addition, the tools also assess a variety of issues, e.g. biodiversity, pollution potential, energy and water use. The level of detail required for the different assessment tools differs substantially; nevertheless it is essential that the indicator systems developed are based on sound knowledge, are acceptable to the farmers and can guide their future actions
The mineralization of commercial organic fertilizers at 8°C temperature
In organic production only organic fertilizers and soil conditioners can be used to supply
the soil with nitrogen. The mineralization of these products is slow and so there can be
problems with the supply of nitrogen, when the demand of the plants is high. The supply of
nitrogen from organic products depends on the speed of their mineralization which is
primarily influenced by the composition and formulation of their raw material.
In apple production in the Alps-region especially during spring problems with nitrogen
supply are common. In that period, the weather conditions are sometimes bad, the
temperature in the soil is low and mineralization starts slowly - apple trees demand more
nitrogen than the soil can deliver.
To compensate the demand of the apple tree organic growers can not use mineral
fertilizers but only organic fertilizers and soil conditioners whose mineralization rate is often
unknown. There is a strong need in organic fruit production to receive more information
about the behaviour of fertilizers in the soil especially concerning their N-release under
different conditions.
To acquire that information, incubation experiments under controlled conditions
(temperature, type of soil, humidity of the soil) were carried out in the laboratory to
determine the mineralization-rate of different organic fertilizers and soil conditioners which
are available in our region
The Impact of Simulation Sequencing on Perceived Clinical Decision Making
An emerging nursing education trend is to utilize simulated learning experiences as a means to optimize competency and decision making skills. The purpose of this study was to examine differences in students\u27 perception of clinical decision making and clinical decision making-related self-confidence and anxiety based on the sequence (order) in which they participated in a block of simulated versus hospital-based learning experiences. A quasi-experimental crossover design was used. Between and within group differences were found relative to self-confidence with the decision making process. When comparing groups, at baseline the simulation followed by hospital group had significantly higher self-confidence scores, however, at 14-weeks both groups were not significantly different. Significant within group differences were found in the simulation followed by hospital group only, demonstrating a significant decrease in clinical decision making related anxiety across the semester. Finally, there were no significant difference in; perceived clinical decision making within or between the groups at the two measurement points. Preliminary findings suggest that simulated learning experiences can be offered with alternating sequences without impacting the process, anxiety or confidence with clinical decision making. This study provides beginning evidence to guide curriculum development and allow flexibility based on student needs and available resources
All-optical nonequilibrium pathway to stabilizing magnetic Weyl semimetals in pyrochlore iridates
Nonequilibrium many-body dynamics is becoming one of the central topics of
modern condensed matter physics. Floquet topological states were suggested to
emerge in photodressed band structures in the presence of periodic laser
driving. Here we propose a viable nonequilibrium route without requiring
coherent Floquet states to reach the elusive magnetic Weyl semimetallic phase
in pyrochlore iridates by ultrafast modification of the effective
electron-electron interaction with short laser pulses. Combining \textit{ab
initio} calculations for a time-dependent self-consistent reduced Hubbard
controlled by laser intensity and nonequilibrium magnetism simulations for
quantum quenches, we find dynamically modified magnetic order giving rise to
transiently emerging Weyl cones that are probed by time- and angle-resolved
photoemission spectroscopy. Our work offers a unique and realistic pathway for
nonequilibrium materials engineering beyond Floquet physics to create and
sustain Weyl semimetals. This may lead to ultrafast, tens-of-femtoseconds
switching protocols for light-engineered Berry curvature in combination with
ultrafast magnetism.Comment: 27 pages including methods and supplementary information, 4 figures,
4 supplementary figure
Utilising the concept of nutrients as a currency within organic farming system
This report was presented at the UK Organic Research 2002 Conference.Within organic systems, the successful management of nutrients at the field level is crucial for maximising production and minimising the environmental impacts. This requires that the farmer makes the best possible use of nutrients excreted by the grazing or housed livestock. In addition, the farmer must successfully manage the nutrients built-up in the ley phase of the crop rotation over the whole of the arable phase period. To analyse these complex flows, a nutrient budget model has been developed that describes the spatial and temporal flows within the organic farming system. The concept is analogous to treating nutrients as a currency where the flow of nutrients represents a cashflow. A spatial nutrient budget permits the analyses of the performance of the nutrient flows to be examined for the housing, manure, livestock, rotational land and permanent pasture to be analysed separately. This analysis will allow the farmer to better understand the weaknesses in the system, and hence take preventative measures
Collaborating with Businesses to Support and Sustain Research
Financial assistance is necessary for sustaining research at universities. Business collaborations are a potential means for obtaining these funds. To secure funding, understanding the process for obtaining these business funds is important for nursing faculty members. Although faculty rarely request funding from businesses, they are often in a position to solicit financial support due to existing relationships with clinical agency administrators, staff, and community leaders. The economic support received from businesses provides outcomes in nursing research, research education, academic–service partnerships, and client health care. This article describes the steps and processes involved in successfully obtaining research funding from businesses. In addition, case examples for securing and maintaining funding from health care agencies (evidence-based practice services) and from a health manufacturing company (product evaluation) are used to demonstrate the process
Anisotropic glass-like properties in tetragonal disordered crystals
The low temperature acoustic and thermal properties of amorphous, glassy
materials are remarkably similar. All these properties are described
theoretically with reasonable quantitative accuracy by assuming that the
amorphous solid contains dynamical defects that can be described at low
temperatures as an ensemble of two-level systems (TLS), but the deep nature of
these TLSs is not clarified yet. Moreover, glassy properties were found also in
disordered crystals, quasicrystals, and even perfect crystals with a large
number of atoms in the unit cell. In crystals, the glassy properties are not
universal, like in amorphous materials, and also exhibit anisotropy. Recently
it was proposed a model for the interaction of two-level systems with arbitrary
strain fields (Phys. Rev. B 75, 64202, 2007), which was used to calculate the
thermal properties of nanoscopic membranes at low temperatures. The model is
also suitable for the description of anisotropic crystals. We describe here the
results of the calculation of anisotropic glass-like properties in crystals of
various lattice symmetries, emphasizing the tetragonal symmetry.Comment: 5 pages, no figure
Elastic response of [111]-tunneling impurities
We study the dynamic response of a [111] quantum impurity, such as lithium or
cyanide in alkali halides, with respect to an external field coupling to the
elastic quadrupole moment. Because of the particular level structure of a
eight-state system on a cubic site, the elastic response function shows a
biexponential relaxation feature and a van Vleck type contribution with a
resonance frequency that is twice the tunnel frequency . This
basically differs from the dielectric response that does not show relaxation.
Moreover, we show that the elastic response of a [111] impurity cannot be
reduced to that of a two-level system. In the experimental part, we report on
recent sound velocity and internal friction measurements on KCl doped with
cyanide at various concentrations. At low doping (45 ppm) we find the dynamics
of a single [111] impurity, whereas at higher concentrations (4700 ppm) the
elastic response rather indicates strongly correlated defects. Our theoretical
model provides a good description of the temperature dependence of
and at low doping, in particular the relaxation peaks, the absolute
values of the amplitude, and the resonant contributions. From our fits we
obtain the value of the elastic deformation potential eV.Comment: 19 pages, 5 figure
- …
