26 research outputs found

    Influence of the strong magnetocrystalline anisotropy on the magnetocaloric properties of MnP single crystal

    Get PDF
    Manganese monophosphate MnP single crystal deserves attention due to its rich magnetic phase diagram, which is quite different depending on the direction of the applied magnetic field. Generally speaking, it has a Curie temperature around 291 K and several other magnetic arrangements at low temperatures (cone-, screw-, fan-, and ferromagnetic-type structures). This richness is due to the strong magnetocrystalline anisotropy. In this sense, the present paper makes a thorough description of the influence of this anisotropy on the magnetocaloric properties of this material. From a fundamental view we could point out, among those several magnetic arrangements, the most stable one. On the other hand, from an applied view, we could show that the magnetic entropy change around room temperature ranges from -4.7 to -3.2 J/kg K, when the magnetic field (5T) is applied along the easy and hard magnetization directions, respectively. In addition, we have shown that it is also possible to take advantage of the magnetic anisotropy for magnetocaloric applications, i.e., we have found a quite flat magnetic entropy change (with a huge relative cooling power), at a fixed value of magnetic field, only rotating the crystal by 90 degrees.771

    Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cells (DC) linking innate and adaptive immune responses are present in human lungs, but the characterization of different subsets and their role in COPD pathogenesis remain to be elucidated. The aim of this study is to characterize and quantify pulmonary myeloid DC subsets in small airways of current and ex-smokers with or without COPD.</p> <p>Methods</p> <p>Myeloid DC were characterized using flowcytometry on single cell suspensions of digested human lung tissue. Immunohistochemical staining for langerin, BDCA-1, CD1a and DC-SIGN was performed on surgical resection specimens from 85 patients. Expression of factors inducing Langerhans-type DC (LDC) differentiation was evaluated by RT-PCR on total lung RNA.</p> <p>Results</p> <p>Two segregated subsets of tissue resident pulmonary myeloid DC were identified in single cell suspensions by flowcytometry: the langerin+ LDC and the DC-SIGN+ interstitial-type DC (intDC). LDC partially expressed the markers CD1a and BDCA-1, which are also present on their known blood precursors. In contrast, intDC did not express langerin, CD1a or BDCA-1, but were more closely related to monocytes.</p> <p>Quantification of DC in the small airways by immunohistochemistry revealed a higher number of LDC in current smokers without COPD and in COPD patients compared to never smokers and ex-smokers without COPD. Importantly, there was no difference in the number of LDC between current and ex-smoking COPD patients.</p> <p>In contrast, the number of intDC did not differ between study groups. Interestingly, the number of BDCA-1+ DC was significantly lower in COPD patients compared to never smokers and further decreased with the severity of the disease. In addition, the accumulation of LDC in the small airways significantly correlated with the expression of the LDC inducing differentiation factor activin-A.</p> <p>Conclusions</p> <p>Myeloid DC differentiation is altered in small airways of current smokers and COPD patients resulting in a selective accumulation of the LDC subset which correlates with the pulmonary expression of the LDC-inducing differentiation factor activin-A. This study identified the LDC subset as an interesting focus for future research in COPD pathogenesis.</p

    Correspondence

    No full text

    Influence Of The Strong Magnetocrystalline Anisotropy On The Magnetocaloric Properties Of Mnp Single Crystal

    No full text
    Manganese monophosphate MnP single crystal deserves attention due to its rich magnetic phase diagram, which is quite different depending on the direction of the applied magnetic field. Generally speaking, it has a Curie temperature around 291 K and several other magnetic arrangements at low temperatures (cone-, screw-, fan-, and ferromagnetic-type structures). This richness is due to the strong magnetocrystalline anisotropy. In this sense, the present paper makes a thorough description of the influence of this anisotropy on the magnetocaloric properties of this material. From a fundamental view we could point out, among those several magnetic arrangements, the most stable one. On the other hand, from an applied view, we could show that the magnetic entropy change around room temperature ranges from -4.7 to -3.2 J kg K, when the magnetic field (5 T) is applied along the easy and hard magnetization directions, respectively. In addition, we have shown that it is also possible to take advantage of the magnetic anisotropy for magnetocaloric applications, i.e., we have found a quite flat magnetic entropy change (with a huge relative cooling power), at a fixed value of magnetic field, only rotating the crystal by 90°. © 2008 The American Physical Society.7710Warburg, E., (1881) Ann. Phys., 13, p. 141. , ANPYA2 0003-3804 10.1002/andp.18030130204Reis, M.S., Amaral, V.S., Araújo, J.P., Tavares, P.B., Gomes, A.M., Oliveira, I.S., (2005) Phys. Rev. B, 71, p. 144413. , PRBMDO 0163-1829 10.1103/PhysRevB.71.144413Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K., (2003) Phys. Rev. B, 67, p. 104416. , PRBMDO 0163-1829 10.1103/PhysRevB.67.104416Fujita, A., Fujieda, S., Fukamichi, K., Mitamura, H., Goto, T., (2001) Phys. Rev. B, 65, p. 014410. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014410Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , PRLTAO 0031-9007 10.1103/PhysRevLett.78.4494Choe, W., Pecharsky, V.K., Pecharsky, A.O., Gschneidner, K.A., Young, V.G., Miller, G.J., (2000) Phys. Rev. Lett., 84, p. 4617. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4617Pecharsky, V.K., Holm, A.P., Gschneidner, K.A., Rink, R., (2003) Phys. Rev. Lett., 91, p. 197204. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.197204Wang, D., Liu, H., Tang, S., Yang, S., Huang, S., Du, Y., (2002) Phys. Lett. a, 297, p. 247. , PYLAAG 0375-9601 10.1016/S0375-9601(02)00159-7De Oliveira, N.A., Von Ranke, P.J., Troper, A., (2004) Phys. Rev. B, 69, p. 064421. , PRBMDO 0163-1829 10.1103/PhysRevB.69.064421Von Ranke, P.J., Nóbrega, E.P., De Oliveira, I.G., Gomes, A.M., Sarthour, R.S., (2001) Phys. Rev. B, 63, p. 184406. , PRBMDO 0163-1829 10.1103/PhysRevB.63.184406Gomes, A., Reis, M., Oliveira, I., Guimaraes, A., Takeuchi, A., (2002) J. Magn. Magn. Mater., 242, p. 870. , JMMMDC 0304-8853Morelli, D., Mance, A., Mantese, J., Micheli, A., (1996) J. Appl. Phys., 79, p. 373. , JAPIAU 0021-8979 10.1063/1.360840Chen, H., Lin, C., Dai, D., (2003) J. Magn. Magn. Mater., 257, p. 254. , JMMMDC 0304-8853Xia Hu, F., Gen Shen, B., Rong Sun, J., (2000) Appl. Phys. Lett., 76, p. 3460. , APPLAB 0003-6951 10.1063/1.126677Zhou, X., Li, W., Kunkel, H., Williams, G., (2004) J. Phys.: Condens. Matter, 16, p. 39. , JCOMEL 0953-8984 10.1088/0953-8984/16/6/L02Tegus, O., Brück, E., Zhang, L., Dagula, Buschow, K., Deboer, F., (2002) Physica B, 319, p. 174. , PHYBE3 0921-4526 10.1016/S0921-4526(02)01119-5Rocco, D., Campos, A., Carvalho, A., Caron, L., Von Ranke, P., Oliveira, N., (2007) Appl. Phys. Lett., 90, p. 242507. , APPLAB 0003-6951 10.1063/1.2746074Campos, A., Rocco, D., Carvalho, A., Caron, L., Coelho, A., Gama, S., Silva, L., Oliveira, N.A., (2006) Nat. Mater., 5, p. 802. , NMAACR 1476-1122 10.1038/nmat1732Gama, S., Coelho, A.A., De Campos, A., Carvalho, A.M., Gandra, F.C.G., Von Ranke, P.J., De Oliveira, N.A., (2004) Phys. Rev. Lett., 93, p. 237202. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.237202Von Ranke, P.J., Gama, S., Coelho, A.A., Campos, A., Carvalho, A.M., Gandra, F.C.G., De Oliveira, N.A., (2006) Phys. Rev. B, 73, p. 014415. , PRBMDO 0163-1829 10.1103/PhysRevB.73.014415Fakidov, I., Krasovskii, V., (1959) Sov. Phys. JETP, 9, p. 755. , SPHJAR 0038-5646Mihalik, M., Sechovsky, V., (2007) J. Magn. Magn. Mater., 310, p. 1758. , JMMMDC 0304-8853Von Ranke, P., Oliveira, N., Sousa, V., Garcia, D., Oliveira, I., Carvalho, A., Gama, S., (2007) J. Magn. Magn. Mater., 313, p. 176. , JMMMDC 0304-8853Von Ranke, P., Oliveira, N., Mello, C., Garcia, D., Sousa, V., Souza, V., Caldas, A., Oliveira, I., (2007) J. Alloys Compd., 440, p. 46. , JALCEU 0925-8388Zou, M., Mudryk, Y., Pecharsky, V.K., Gschneidner, K.A., Schlagel, D.L., Lograsso, T.A., (2007) Phys. Rev. B, 75, p. 024418. , PRBMDO 0163-1829 10.1103/PhysRevB.75.024418Von Ranke, P.J., De Oliveira, N.A., Garcia, D.C., De Sousa, V.S.R., De Souza, V.A., Carvalho, A.M., Gama, S., Reis, M.S., (2007) Phys. Rev. B, 75, p. 184420. , PRBMDO 0163-1829 10.1103/PhysRevB.75.184420Becerra, C.C., Bindilatti, V., Oliveira, N.F., (2000) Phys. Rev. B, 62, p. 8965. , PRBMDO 0163-1829 10.1103/PhysRevB.62.8965Huber, E.E., Ridgley, D.H., (1964) Phys. Rev., 135, p. 1033. , PRVAAH 0096-8250 10.1103/PhysRev.135.A1033Komatsubara, T., Shinohara, H., Suzuki, T., Hirahara, E., (1969) J. Appl. Phys., 40, p. 1037. , JAPIAU 0021-8979 10.1063/1.1657521Becerra, C.C., Brumatto, H.J., Oliveira, N.F., (1996) Phys. Rev. B, 54, p. 15997. , PRBMDO 0163-1829 10.1103/PhysRevB.54.15997Shapira, Y., Becerra, C.C., Oliveira, N.F., Chang, T.S., (1981) Phys. Rev. B, 24, p. 2780. , PRBMDO 0163-1829 10.1103/PhysRevB.24.2780Zieba, A., Becerra, C.C., Fjellvag, H., Oliveira, N.F., Kjekshus, A., (1992) Phys. Rev. B, 46, p. 3380. , PRBMDO 0163-1829 10.1103/PhysRevB.46.3380Todate, Y., Yamada, K., Endoh, Y., Ishikawa, Y., (1987) J. Phys. Soc. Jpn., 56, p. 36. , JUPSAU 0031-9015 10.1143/JPSJ.56.36Aharoni, A., (1998) J. Appl. Phys., 83, p. 3432. , JAPIAU 0021-8979 10.1063/1.367113Amaral, J.S., Tishin, A., Spichkin, Y., (2003) The Magnetocaloric Effect and Its Applications, , Institute of Physics, BristolGschneidner, K., Pecharskyand, V., Tsokol, A., (2005) Rep. Prog. Phys., 68, p. 1479. , RPPHAG 0034-4885 10.1088/0034-4885/68/6/R0
    corecore