458 research outputs found

    p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation

    Get PDF
    Heterozygous germline mutations in p63, a transcription factor of the p53 family, result in abnormal morphogenesis of the skin and its associated structures, including hair follicles and teeth. In mice lacking p63, all ectodermal organs fail to develop, and stratification of the epidermis is absent. We show that the ectodermal placodes that mark early tooth and hair follicle morphogenesis do not form in p63-deficient embryos, although the multilayered dental lamina that precedes tooth placode formation develops normally. The N-terminally truncated isoform of p63 (?Np63) was expressed at high levels in embryonic ectoderm at all stages of tooth and hair development, and it was already dominant over the transactivating TAp63 isoform prior to epidermal stratification. Bmp7, Fgfr2b, Jag1 and Notch1 transcripts were co-expressed with ANp63 in wild-type embryos, but were not detectable in the ectoderm of p63 mutants. In addition, ?-catenin and Edar transcripts were significantly reduced in skin ectoderm. We also demonstrate that BMP2, BMP7 and FGF10 are potent inducers of p63 in cultured tissue explants. Hence, we suggest that p63 regulates the morphogenesis of surface ectoderm and its derivatives via multiple signalling pathways

    Induction of insulin-like growth factor 2 expression in a mesenchymal cell line co-cultured with an ameloblast cell line

    Get PDF
    Various growth factors have been implicated in the regulation of cell proliferation and differentiation during tooth development. It has been unclear if insulin-like growth factors (IGFs) participate in the epithelium–mesenchyme interactions of tooth development. We previously produced three-dimensional sandwich co-culture systems (SW) containing a collagen membrane that induce the differentiation of epithelial cells. In the present study, we used the SW system to analyze the expression of IGFs and IGFRs. We demonstrate that IGF2 expression in mesenchymal cells was increased by SW. IGF1R transduces a signal; however, IGF2R does not transduce a signal. Recombinant IGF2 induces IGF1R and IGF2R expression in epithelial cells. IGF1R expression is increased by SW; however, IGF2R expression did not increase by SW. Thus, IGF2 signaling works effectively in SW. These results suggest that IGF signaling acts through the collagen membrane on the interaction between the epithelium and mesenchyme. In SW, other cytokines may be suppressed to induce IGF2R induction. Our results suggest that IGF2 may play a role in tooth differentiation

    Characterization of Cellular Responses Involved in Reparative Dentinogenesis in Rat Molars

    Full text link
    During primary dentin formation, differentiating primary odontoblasts secrete an organic matrix, consisting principally of type I collagen and non-collagenous proteins, that is capable of mineralizing at its distal front. In contrast to ameloblasts that form enamel and undergo programed cell death, primary odontoblasts remain metabolically active in a functional tooth. When dentin is exposed to caries or by operative procedures, and when exposed dentinal tubules are treated with therapeutic dental materials, the original population of odontoblasts is often injured and destroyed. The characteristics of the replacement pool of cells that form reparative dentin and the biologic mechanisms that modulate the formation of this matrix are poorly understood. Based on the hypothesis that events governing primary dentinogenesis are reiterated during dentin repair, the present study was designed to test whether cells that form reparative dentin are odontoblast-like. Cervical cavities were prepared in rat first molars to generate reparative dentin, and animals were killed at various time intervals. In situ hybridization with gene-specific riboprobes for collagen types I and III was used to study de novo synthesis by cells at the injured dentin-pulp interface. Polyclonal antibodies raised against dentin sialoprotein (DSP), a dentin-specific protein that marks the odontoblast phenotype, were used in immunohistochemical experiments. Data from our temporal and spatial analyses indicated that cells forming reparative dentin synthesize type I but not type III collagen and are immunopositive for DSP. Our results suggest that cells that form reparative dentin are odontoblast-like.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67273/2/10.1177_00220345950740021301.pd

    Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy

    Get PDF
    The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ

    Developmental Dental Aberrations After the Dioxin Accident in Seveso

    Get PDF
    Children’s developing teeth may be sensitive to environmental dioxins, and in animal studies developing teeth are one of the most sensitive targets of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Twenty-five years after the dioxin accident in Seveso, Italy, 48 subjects from the contaminated areas (zones A and B) and in patches lightly contaminated (zone R) were recruited for the examination of dental and oral aberrations. Subjects were randomly invited from those exposed in their childhood and for whom frozen serum samples were available. The subjects were frequency matched with 65 subjects from the surrounding non-ABR zone for age, sex, and education. Concentrations of TCDD in previously analyzed plasma samples (zone ABR subjects only) ranged from 23 to 26,000 ng/kg in serum lipid. Ninety-three percent (25 of 27) of the subjects who had developmental enamel defects had been < 5 years of age at the time of the accident. The prevalence of defects in this age group was 42% (15 of 36) in zone ABR subjects and 26% (10 of 39) in zone non-ABR subjects, correlating with serum TCDD levels (p = 0.016). Hypodontia was seen in 12.5% (6 of 48) and 4.6% (3 of 65) of the zone ABR and non-ABR subjects, respectively, also correlating with serum TCDD level (p = 0.05). In conclusion, developmental dental aberrations were associated with childhood exposure to TCDD. In contrast, dental caries and periodontal disease, both infectious in nature, and oral pigmentation and salivary flow rate were not related to the exposure. The results support our hypothesis that dioxins can interfere with human organogenesis

    Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A

    Get PDF
    Botulinum neurotoxin type A (BoNT/A) paralyses muscles by blocking acetylcholine (ACh) release from motor nerve terminals. Although highly toxic, it is used clinically to weaken muscles whose contraction is undesirable, as in dystonias. The effects of an injection of BoNT/A wear off after 3–4 months so repeated injections are often used. Recovery of neuromuscular transmission is accompanied by the formation of motor axon sprouts, some of which form new synaptic contacts. However, the functional importance of these new contacts is unknown. Using intracellular and focal extracellular recording we show that in the mouse epitrochleoanconeus (ETA), quantal release from the region of the original neuromuscular junction (NMJ) can be detected as soon as from new synaptic contacts, and generally accounts for > 80% of total release. During recovery the synaptic delay and the rise and decay times of endplate potentials (EPPs) become prolonged approximately 3-fold, but return to normal after 2–3 months. When studied after 3–4 months, the response to repetitive stimulation at frequencies up to 100 Hz is normal. When two or three injections of BoNT/A are given at intervals of 3–4 months, quantal release returns to normal values more slowly than after a single injection (11 and 15 weeks to reach 50% of control values versus 6 weeks after a single injection). In addition, branching of the intramuscular muscular motor axons, the distribution of the NMJs and the structure of many individual NMJs remain abnormal. These findings highlight the plasticity of the mammalian NMJ but also suggest important limits to it

    Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development

    Get PDF
    The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway

    Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine

    Get PDF
    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance

    Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated.</p> <p>Results</p> <p>DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1<sup>+ </sup>DPSCs at the 1<sup>st </sup>and 9<sup>th </sup>passages were investigated. During the long-term passage, the proliferation ability of human STRO-1<sup>+ </sup>DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1<sup>+ </sup>DPSCs at the 1<sup>st </sup>passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1<sup>+ </sup>DPSCs at the 9<sup>th </sup>passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. <it>In vivo </it>transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues.</p> <p>Conclusions</p> <p>These findings suggest that STRO-1<sup>+ </sup>DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9<sup>th </sup>passage restrict their differentiation potential to the osteoblast lineage <it>in vivo</it>.</p
    corecore