72 research outputs found

    Optimum spectral window for imaging of art with optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS-NIR (400 nm – 2400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general

    AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water

    Get PDF
    AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ∼420  nm∼420  nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber

    Surface and interface treatments on wooden artefacts: Potentialities and limits of a non-invasive multi-technique study

    Get PDF
    Wooden artefacts embrace wide-ranging types of objects, like paintings on panel, sculptures, musical instruments, and furniture. Generally, in the manufacturing process of an artwork, wood is firstly treated with organic and inorganic materials to make it nonporous and morphologically homogeneous, and, at last, the surface treatment consists of varnishes or coatings applied with the aims of conferring aesthetic properties and protecting wood from biological growth and external degradation agents, as well as mechanical damage. In this work, different wooden mock-ups were prepared by varying some parameters: concentration of filler and pigment, respectively, in the ground and paint layers, thickness of the protective varnish coat, and sequence of the layers. The mock-ups were subsequently exposed to time-varying artificial aging processes. The multi-analytical non-invasive approach involved spectroscopic (reflection FT-IR, Raman, and X-ray fluorescence), tomographic (optical coherence tomography) and colorimetric techniques. Data were interpreted using both univariate and multivariate methods. The aim was to evaluate potential and limits of each non-invasive technique into the study of different stratigraphies of wooden artworks. This approach was supported by microscopic observations of cross-sections obtained from selected mock-ups. The methodological approach proposed here would add valuable technical know-how and information about the non-invasive techniques applied to the study of wooden artworks

    High Speed Visible Light Communication Using Blue GaN Laser Diodes

    Get PDF
    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications

    Surface and interface treatments on wooden artefacts: Potentialities and limits of a non-invasive multi-technique study

    Get PDF
    Wooden artefacts embrace wide-ranging types of objects, like paintings on panel, sculptures, musical instruments, and furniture. Generally, in the manufacturing process of an artwork, wood is firstly treated with organic and inorganic materials to make it nonporous and morphologically homogeneous, and, at last, the surface treatment consists of varnishes or coatings applied with the aims of conferring aesthetic properties and protecting wood from biological growth and external degradation agents, as well as mechanical damage. In this work, different wooden mock-ups were prepared by varying some parameters: concentration of filler and pigment, respectively, in the ground and paint layers, thickness of the protective varnish coat, and sequence of the layers. The mock-ups were subsequently exposed to time-varying artificial aging processes. The multi-analytical non-invasive approach involved spectroscopic (reflection FT-IR, Raman, and X-ray fluorescence), tomographic (optical coherence tomography) and colorimetric techniques. Data were interpreted using both univariate and multivariate methods. The aim was to evaluate potential and limits of each non-invasive technique into the study of different stratigraphies of wooden artworks. This approach was supported by microscopic observations of cross-sections obtained from selected mock-ups. The methodological approach proposed here would add valuable technical know-how and information about the non-invasive techniques applied to the study of wooden artworks

    From IR to X-rays: approaches to go through the coating system of historical bowed string musical instruments

    Get PDF
    Some historical bowed string musical instruments produced in Italy from the 16th to 18th Centuries are considered until now peak-quality masterpieces of the violin-making art. Technical skills were mostly lost after the disappearance of the prominent workshops, and nowadays ancient methods and materials are charming secrets to be revealed by scientific techniques. This work discusses the results obtained by investigating the complex coating systems on bowed string instruments produced by four violin-makers, namely: Jacobus Stainer, Gasparo da Salò, Giovanni Paolo Maggini and Lorenzo Guadagnini. They were selected in order to represent convincingly - albeit not exhaustively - the variety of situations that can be encountered when multi-layered coatings on historical bowed string instruments are considered. The coating systems have been investigated though micro-invasive and non-invasive procedures [1], employing UV-imaging, portable X-ray fluorescence, optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometry and Fourier transform infrared microscopy. In addition, two tomographic techniques (synchrotron radiation micro-computed tomography and optical coherence tomography) have been used to image the finishing layers spread on the wood substrate [2,3]. Chemical investigations and images on cross-sections have been compared with the morphological view obtained by tomography, with particular attention to the ability of the tomographic insight to distinguish and measure the various overlying layers, and to highlight the presence of dispersed particles

    Severity of Experimental Escherichia coli Mastitis in Ketonemic and Nonketonemic Dairy Cows

    Get PDF
    The severity of experimental Escherichia coli mastitis in relation to in vitro chemotaxis of polymorphonuclear leukocytes was investigated in cows during negative energy balance. The negative energy balance was induced by feed restriction. Cows were classified into two groups, ketonemic and nonketonemic, based on the beta-hydroxybutyrate concentration in the peripheral blood at the moment of inoculation. Bacterial growth in the inoculated quarter was used as a parameter to indicate the severity of experimental mastitis. In the nonketonemic cows, experimental mastitis ranged from moderate to severe. Severity of experimental mastitis was negatively related to preinfection chemotactic response of polymorphonuclear leukocytes. In contrast, the course of experimental mastitis in the ketonemic group was relatively severe in all cows, regardless of preinfection chemotactic response
    • …
    corecore