43 research outputs found

    Germline EMSY sequence alterations in hereditary breast cancer and ovarian cancer families

    Get PDF
    Background: BRCA1 and BRCA2 mutations explain approximately one-fifth of the inherited susceptibility in high-risk Finnish hereditary breast and ovarian cancer (HBOC) families. EMSY is located in the breast cancer-associated chromosomal region 11q13. The EMSY gene encodes a BRCA2-interacting protein that has been implicated in DNA damage repair and genomic instability. We analysed the role of germline EMSY variation in breast/ovarian cancer predisposition. The present study describes the first EMSY screening in patients with high familial risk for this disease.Methods: Index individuals from 71 high-risk, BRCA1/2-negative HBOC families were screened for germline EMSY sequence alterations in protein coding regions and exon-intron boundaries using Sanger sequencing and TaqMan assays. The identified variants were further screened in 36 Finnish HBOC patients and 904 controls. Moreover, one novel intronic deletion was screened in a cohort of 404 breast cancer patients unselected for family history. Haplotype block structure and the association of haplotypes with breast/ovarian cancer were analysed using Haploview. The functionality of the identified variants was predicted using Haploreg, RegulomeDB, Human Splicing Finder, and Pathogenic-or-Not-Pipeline 2.Results: Altogether, 12 germline EMSY variants were observed. Two alterations were located in the coding region, five alterations were intronic, and five alterations were located in the 3'untranslated region (UTR). Variant frequencies did not significantly differ between cases and controls. The novel variant, c.2709 + 122delT, was detected in 1 out of 107 (0.9%) breast cancer patients, and the carrier showed a bilateral form of the disease. The deletion was absent in 897 controls (OR = 25.28; P = 0.1) and in 404 breast cancer patients unselected for family history. No haplotype was identified to increase the risk of breast/ovarian cancer. Functional analyses suggested that variants, particularly in the 3'UTR, were located within regulatory elements. The novel deletion was predicted to affect splicing regulatory elements.Conclusions: These results suggest that the identified EMSY variants are likely neutral at the population level. However, these variants may contribute to breast/ovarian cancer risk in single families. Additional analyses are warranted for rare novel intronic deletions and the 3'UTR variants predicted to have functional roles

    Dynamics of attachment and emotion regulation in daily life : uni- and bidirectional associations

    Get PDF
    Attachment theory proposes that the activation of the attachment system enacts emotion regulation (ER) to maintain security or cope with insecurity. However, the effects of ER on attachment states and their bidirectional influences remain poorly understood. In this ecological momentary assessment study, we examined the dynamics between attachment and ER. We hypothesised that attachment states and ER influence each other through time. Specifically, we hypothesised bidirectional short-term cycles between state attachment security and reappraisal, state attachment anxiety and rumination, and state attachment avoidance and suppression. We also tested how trait attachment is related to state attachment and ER. One hundred twenty-two participants (M-age = 26.4) completed the Experiences in Close Relationship-Revised and reported state attachment and ER seven times daily for seven days. The results were only partly consistent with our cycle hypotheses yet revealed a cycle between low state attachment security and rumination that was attenuated by reappraisal. Moreover, rumination and suppression predicted increased insecure states, and reappraisal predicted increased secure and insecure states. Finally, trait attachment showed associations with state attachment and ER. Our study suggests regulatory dynamics between attachment and ER and opens important questions about their functional relationship in maintaining attachment-related behavioural patterns and emotional well-being.Peer reviewe

    Deletions at 14q in malignant mesothelioma detected by microsatellite marker analysis

    Get PDF
    Previous molecular cytogenetic studies by comparative genomic hybridization (CGH) on primary tumours of human malignant mesothelioma have revealed that loss of genetic material at chromosome 14q is one of the most frequently occurring aberrations. Here we further verify the frequency and pattern of deletions at 14q in mesothelioma. A high-resolution deletion mapping analysis of 23 microsatellite markers was performed on 18 primary mesothelioma tumours. Eight of these had previously been analysed by CGH. Loss of heterozygosity or allelic imbalance with at least one marker was detected in ten of 18 tumours (56%). Partial deletions of varying lengths were more common than loss of all informative markers, which occurred in only one tumour. The highest number of tumours with deletions at a specific marker was detected at 14q11.1–q12 with markers D14S283 (five tumours), D14S972 (seven tumours) and D14S64 (five tumours) and at 14q23–q24 with markers D14S258 (five tumours), D14S77 (five tumours) and D14S284 (six tumours). We conclude from these data that genomic deletions at 14q are more common than previously reported in mesothelioma. Furthermore, confirmation of previous CGH results was obtained in all tumours but one. This tumour showed deletions by allelotyping, but did not show any DNA copy number change at 14q by CGH. Although the number of tumours allelotyped was small and the deletion pattern was complex, 14q11.1–q12 and 14q23–q24 were found to be the most involved regions in deletions. These regions provide a good basis for further molecular analyses and may highlight chromosomal locations of tumour suppressor genes that could be important in the tumorigenesis of malignant mesothelioma. © 1999 Cancer Research Campaig

    Espoon ja Kirkkonummen saaristojen linnustosta.

    No full text
    corecore