103 research outputs found

    Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps

    Get PDF
    © 2017 The Author(s). This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    Transport properties of copper phthalocyanine based organic electronic devices

    Get PDF
    Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied experimentally in field-effect transistors and metal-insulator-semiconductor diodes at various temperatures. The electronic structure and the transport properties of CuPc attached to leads are calculated using density functional theory and scattering theory at the non-equilibrium Green's function level. We discuss, in particular, the electronic structure of CuPc molecules attached to gold chains in different geometries to mimic the different experimental setups. The combined experimental and theoretical analysis explains the dependence of the mobilityand the transmission coefficient on the charge carrier type (electrons or holes) and on the contact geometry. We demonstrate the correspondence between our experimental results on thick films and our theoretical studies of single molecule contacts. Preliminary results for fluorinated CuPc are discussed.Comment: 18 pages, 16 figures; to be published in Eur. Phys. J. Special Topic

    Optimization of insect cell based protein production processes - online monitoring, expression systems, scale-up

    Get PDF
    Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale-up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes

    In vitro analysis of a physiological strain sensor formulated from a PEDOT:PSS functionalized carbon nanotube-poly(glycerol sebacate urethane) composite.

    Get PDF
    Biodegradable strain sensors able to undergo controlled degradation following implantation have recently received significant interest as novel approaches to detect pathological tissue swelling or non-physiological stresses. In this study, the physicomechanical, electrochemical and active pressure sensing behavior of an electrically conductive and biodegradable poly(glycerol sebacate urethane) (PGSU) composite, reinforced with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) functionalized carbon nanotubes (CNTs), was evaluated in vitro. Analysis of these PGSU-CNTs composites demonstrated that the incorporation of functionalized CNTs into a biodegradable elastomer resulted in enhanced mechanical strength, conductivity and tailored matrix biodegradation. PGSU-CNT composites were subsequently formulated into flexible and active pressure sensors which demonstrated optimal sensitivity to applied 1% uniaxial tensile strains. Finally, cytocompatibility analysis a with primary neural culture confirmed that PGSU-CNT composites exhibited low cytotoxicity, and supported neuron adhesion, viability, and proliferation in vitro

    Classifying and Grouping Mammography Images into Communities Using Fisher Information Networks to Assist the Diagnosis of Breast Cancer

    Get PDF
    © 2020, Springer Nature Switzerland AG. The aim of this paper is to build a computer based clinical decision support tool using a semi-supervised framework, the Fisher Information Network (FIN), for visualization of a set of mammographic images. The FIN organizes the images into a similarity network from which, for any new image, reference images that are closely related can be identified. This enables clinicians to review not just the reference images but also ancillary information e.g. about response to therapy. The Fisher information metric defines a Riemannian space where distances reflect similarity with respect to a given probability distribution. This metric is informed about generative properties of data, and hence assesses the importance of directions in space of parameters. It automatically performs feature relevance detection. This approach focusses on the interpretability of the model from the standpoint of the clinical user. Model predictions were validated using the prevalence of classes in each of the clusters identified by the FIN

    Recent Updates on the Melanin-Concentrating Hormone (MCH) and Its Receptor System: Lessons from MCH1R Antagonists

    Get PDF
    Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic peptide which was originally found to lighten skin color in fish that is highly conserved among many species. MCH interacts with two G-protein-coupled receptors, MCH1R and MCH2R, but only MCH1R is expressed in rodents. MCH is mainly synthesized in the lateral hypothalamus and zona incerta, while MCH1R is widely expressed throughout the brain. Thus, MCH signaling is implicated in the regulation of many physiological functions. The identification of MCH1R has led to the development of small-molecule MCH1R antagonists that can block MCH signaling. MCH1R antagonists are useful not only for their potential therapeutic value, but also for understanding the physiological functions of the endogenous MCH system. Here, we review the physiological functions of the MCH system which have been investigated using MCH1R antagonists such as food intake, anxiety, depression, reward, and sleep. This will help us understand the physiological functions of the MCH system and suggest some of the potential applications of MCH1R antagonists in human disorders

    Personalized nutrition in ageing society

    Get PDF
    A healthy ageing process is important when it is considered that one-third of the population of Europe is already over 50 years old, although there are regional variations. This proportion is likely to increase in the future, and maintenance of vitality at an older age is not only an important measure of the quality of life but also key to participation and productivity. So, the binomial “nutrition and ageing” has different aspects and poses considerable challenges, providing a fertile ground for research and networks. The NutRedOx network will focus on the impact of redoxactive compounds in food on healthy ageing, chemoprevention, and redox control in the context of major age-related diseases. The main aim of the NutRedOx network is to gather experts from Europe, and neighbouring countries, and from different disciplines that are involved in the study of biological redox active food components and are relevant to the ageing organism, its health, function, and vulnerability to disease. Together, these experts will form a major and sustainable EU-wide cluster in form of the NutRedOx Centre of Excellence able to address the topic from different perspectives, with the long-term aim to provide a scientific basis for improved nutritional and lifestyle habits, to train the next generation of multidisciplinary researchers in this field, to raise awareness of such habits among the wider population, and also to engage with industry to develop age-adequate foods and medicines
    corecore