47 research outputs found
Insensitivity of visual short-term memory to irrelevant visual information
Several authors have hypothesised that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996a). Experiment 1 replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery
Increased susceptibility to proactive interference in adults with dyslexia?
Recent findings show that people with dyslexia have an impairment in serial-order memory. Based on these findings, the present study aimed to test the hypothesis that people with dyslexia have difficulties dealing with proactive interference (PI) in recognition memory. A group of 25 adults with dyslexia and a group of matched controls were subjected to a 2-back recognition task, which required participants to indicate whether an item (mis)matched the item that had been presented 2 trials before. PI was elicited using lure trials in which the item matched the item in the 3-back position instead of the targeted 2-back position. Our results demonstrate that the introduction of lure trials affected 2-back recognition performance more severely in the dyslexic group than in the control group, suggesting greater difficulty in resisting PI in dyslexia.Peer reviewedFinal Accepted Versio
Encoding order and developmental dyslexia:a family of skills predicting different orthographic components
We investigated order encoding in developmental dyslexia using a task that presented nonalphanumeric visual characters either simultaneously or sequentially—to tap spatial and temporal order encoding, respectively—and asked participants to reproduce their order. Dyslexic participants performed poorly in the sequential condition, but normally in the simultaneous condition, except for positions most susceptible to interference. These results are novel in demonstrating a selective difficulty with temporal order encoding in a dyslexic group. We also tested the associations between our order reconstruction tasks and: (a) lexical learning and phonological tasks; and (b) different reading and spelling tasks. Correlations were extensive when the whole group of participants was considered together. When dyslexics and controls were considered separately, different patterns of association emerged between orthographic tasks on the one side and tasks tapping order encoding, phonological processing, and written learning on the other. These results indicate that different skills support different aspects of orthographic processing and are impaired to different degrees in individuals with dyslexia. Therefore, developmental dyslexia is not caused by a single impairment, but by a family of deficits loosely related to difficulties with order. Understanding the contribution of these different deficits will be crucial to deepen our understanding of this disorder
Estimating the executive demands of a one-back choice reaction time task by means of the selective interference paradigm
The present study proposes a new executive task, the one-back choice reaction time (RT) task, and implements the selective interference paradigm to estimate the executive demands of the processing components involved in this task. Based on the similarities between a one-back choice RT task and the n-back updating task, it was hypothesized that one-back delaying of a choice reaction involves executive control. In three experiments, framed within Baddeley's (1986) working-memory model, a one-back choice RT task, a choice RT task, articulatory suppression, and matrix tapping were performed concurrently with primary tasks involving verbal, visuospatial, and executive processing. The results demonstrate that one-back delaying of a choice reaction interferes with tasks requiring executive control, while the potential interference at the level of the verbal or visuospatial working memory slave systems remains minimal. © 2006 The Experimental Psychology Society
Working memory components of the Corsi blocks task
A computerized version of the Corsi blocks task (Milner, 1971) was assessed for standard forward-recall order (Experiments 1 and 3) and for reversed-recall order (Experiments 2 and 3) either in a single-task or in a dual-task design combined with articulatory suppression, matrix-tapping, random-interval generation or fixed-interval generation as concurrent tasks during the encoding stage. Concurrent performance of the matrix-tapping task impaired memory performance for short as well as for longer block sequences. The random-interval generation task, which loads executive processes, impaired memory performance mainly at intermediate- and longer-sequence lengths, while fixed-interval generation, which is presumed to put no load on executive processing, did not show any effect. Articulatory suppression did not impair memory performance on forward-recall order, but it impaired memory for longer sequences in the backward-recall condition in Experimentt 2, but not in Experiment 3. The results are discussed within the context of the working-memory model of Baddeley and Hitch (1974
Differential contributions of set-shifting and monitoring to dual-task interference
It is commonly argued that complex behaviour is regulated by a number of “executive functions” which work to co-ordinate the operation of disparate cognitive systems in the service of an overall goal. However, the identity, roles, and interactions of specific putative executive functions remain contentious, even within widely accepted tests of executive function. The authors present two experiments that use dual-task interference to provide further support for multiple distinct executive functions and to establish the differential contributions of those functions in two relatively complex executive tasks – Random Generation and the Wisconsin Card Sorting Test. Results are interpreted in terms of process models of the complex executive tasks