1,854 research outputs found

    Comparative analysis of different methods of modeling the thermal effect of circulating blood flow during RF cardiac ablation

    Get PDF
    Our aim was to compare the different methods of modeling the effect of circulating blood flow on the thermal lesion dimensions created by radio frequency (RF) cardiac ablation and on the maximum blood temperature. Computational models were built to study the temperature distributions and lesion dimensions created by a nonirrigated electrode by two RF energy delivery protocols (constant voltage and constant temperature) under high and low blood flow conditions. Four methods of modeling the effect of circulating blood flowon lesion dimensions and temperature distribution were compared. Three of them considered convective coefficients at the electrode-blood and tissue-blood interfaces to model blood flow: 1) without including blood as a part of the domain; 2) constant electrical conductivity of blood; and 3) temperaturedependent electrical conductivity of blood (+2%/°C). Method 4) included blood motion andwas considered to be a reference method for comparison purposes. Only Method 4 provided a realistic blood temperature distribution.The other three methods predicted lesion depth values similar to those of the reference method (differences smaller than 1 mm), regardless of ablation mode and blood flow conditions. Considering the aspects of lesion size and maximum temperature reached in blood and tissue, Method 2 seems to be the most suitable alternative to Method 4 in order to reduce the computational complexity. Our findings could have an important implication in future studies of RF cardiac ablation, in particular, in choosing the most suitable method to model the thermal effect of circulating blood

    Diverse routes to oscillation death in a coupled-oscillator system.

    Get PDF
    We study oscillation death (OD) in a well-known coupled-oscillator system that has been used to model cardiovascular phenomena. We derive exact analytic conditions that allow the prediction of OD through the two known bifurcation routes, in the same model, and for different numbers of coupled oscillators. Our exact analytic results enable us to generalize OD as a multiparameter-sensitive phenomenon. It can be induced, not only by changes in couplings, but also by changes in the oscillator frequencies or amplitudes. We observe synchronization transitions as a function of coupling and confirm the robustness of the phenomena in the presence of noise. Numerical and analogue simulations are in good agreement with the theory
    • …
    corecore